L6 Basic rules of differentiation: polynomials and exponentials

Derivative of a Constant

If c is a constant, then
$$\frac{d}{dx}(c) =$$

Power functions of the form $f(x) = x^n$

$$1) \frac{d}{dx}(x) =$$

2) If n is a positive integer, $\frac{d}{dx}(x^n) =$

To prove this, we need the formula

$$\begin{aligned} x^n - a^n &= \\ (x - a)(x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \dots + xa^{n-2} + a^{n-1}) \end{aligned}$$

This result extends to all real numbers.

Power Rule

For any real number r, $\frac{d}{dx}(x^r) =$

ex. Find the following derivatives:

$$1) \ \frac{d}{dx}\left(\frac{\pi}{2}\right) =$$

2)
$$\frac{d}{dx}(x^{125}) =$$

$$3) \frac{d}{dx} \left(\frac{1}{x^5}\right) =$$

<u>ex.</u> Find each x-value at which $f(x) = x\sqrt{x}$ is perpendicular to 2y + x = 6.

The next rules, based on the limit laws, allow us to find derivatives of some combinations of functions.

Constant Multiple Rule

If c is a constant and f is differentiable then

 $\frac{d}{dx}(cf(x)) =$

Sum and Difference Rules

If f and g are both differentiable,

$$\frac{d}{dx}[f(x) \pm g(x)] =$$

We can now find the derivative of any polynomial function.

ex. Find
$$f'(x)$$
 if $f(x) = 4x^3 + 9x^2 - 12x + 3$.

<u>ex.</u> At which x-values does $f(x) = 4x^3 + 9x^2 - 12x + 3$ have horizontal tangent lines? Write the equation of each line.

<u>**Def.**</u> The normal line to a curve at a point P is the line through P that is perpendicular to the tangent line at P.

 $\underline{\mathbf{ex.}}$ Find the equation of the normal line to

$$f(x) = \frac{\sqrt{x} - 6\sqrt[3]{x} + 4}{\sqrt[4]{x}}$$
 at $x = 1$.

Derivatives of Exponential Functions

Consider
$$\frac{d}{dx}f(x)$$
 where $f(x) = a^x$, $a > 0$.

First, find the value of f'(0).

f'(0) =

To find f'(x):

What does this say about the rate of change of any exponential?

If
$$a = 2$$
, $f'(0) = \lim_{h \to 0}$

If
$$a = 3$$
, $f'(0) = \lim_{h \to 0}$

<u>**Def.**</u> e is the number such that $\lim_{h\to 0} \frac{e^h - 1}{h} =$

We have:
$$\frac{d}{dx}(e^x) =$$

NOTE:

<u>ex.</u> Find g'(x) if $g(x) = ex^2 + 2e^x + xe^2 + x^{e^2}$.

Product and Quotient Rules

ex. Let
$$f(x) = x^2$$
 and $g(x) = x + 1$.
What is $\frac{d}{dx}[f(x)g(x)]$?

The Product Rule

If f and g are both differentiable, then

$$\frac{d}{dx}[f(x)g(x)] =$$

<u>ex.</u> Find each point at which $f(x) = xe^x$ has a horizontal tangent line.

The Quotient Rule: If f and g are both differentiable, then

$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) =$$

<u>ex.</u> Find f'(x) if $f(x) = \frac{4x}{x^2 + 1}$.

Find the equation of all horizontal tangent lines of the graph of f(x).

<u>ex.</u> Find the equation of the normal line to $y = \frac{1}{x^2 - 2}$ at x = 2.

ex. Find
$$f'(4)$$
 if $f(x) = \frac{(\sqrt{x}-2)^2}{\sqrt{x}}$.

ex. If
$$h(x) = \frac{x^2 - 3}{xf(x)}$$
, $f(-2) = 3$, and $f'(-2) = \frac{1}{2}$, find $h'(-2)$.

<u>ex.</u> At what point(s) do the tangent lines to $y = \frac{x^3 + x^2}{x}$ pass through the point (2, -3)?

