L6 Basic rules of differentiation: polynomials and exponentials

Derivative of a Constant
If c is a constant, then $\frac{d}{d x}(c)=$

Power functions of the form $f(x)=x^{n}$

1) $\frac{d}{d x}(x)=$

2) If n is a positive integer, $\frac{d}{d x}\left(x^{n}\right)=$

To prove this, we need the formula

$$
\begin{aligned}
& x^{n}-a^{n}= \\
& \qquad(x-a)\left(x^{n-1}+x^{n-2} a+x^{n-3} a^{2}+\ldots+x a^{n-2}+a^{n-1}\right)
\end{aligned}
$$

This result extends to all real numbers.

Power Rule

For any real number $r, \frac{d}{d x}\left(x^{r}\right)=$
ex. Find the following derivatives:

1) $\frac{d}{d x}\left(\frac{\pi}{2}\right)=$
2) $\frac{d}{d x}\left(x^{125}\right)=$
3) $\frac{d}{d x}\left(\frac{1}{x^{5}}\right)=$
ex. Find each x-value at which $f(x)=x \sqrt{x}$ is perpendicular to $2 y+x=6$.

The next rules, based on the limit laws, allow us to find derivatives of some combinations of functions.

Constant Multiple Rule

If c is a constant and f is differentiable then
$\frac{d}{d x}(c f(x))=$

Sum and Difference Rules

If f and g are both differentiable,
$\frac{d}{d x}[f(x) \pm g(x)]=$

We can now find the derivative of any polynomial function.
ex. Find $f^{\prime}(x)$ if $f(x)=4 x^{3}+9 x^{2}-12 x+3$.
ex. At which x-values does $f(x)=4 x^{3}+9 x^{2}-12 x+3$ have horizontal tangent lines? Write the equation of each line.

Def. The normal line to a curve at a point P is the line through P that is perpendicular to the tangent line at P.
ex. Find the equation of the normal line to
$f(x)=\frac{\sqrt{x}-6 \sqrt[3]{x}+4}{\sqrt[4]{x}}$ at $x=1$.

Derivatives of Exponential Functions

Consider $\frac{d}{d x} f(x)$ where $f(x)=a^{x}, a>0$.
First, find the value of $f^{\prime}(0)$.

$$
f^{\prime}(0)=
$$

To find $f^{\prime}(x)$:

What does this say about the rate of change of any exponential?

$$
\text { If } a=2, f^{\prime}(0)=\lim _{h \rightarrow 0}
$$

If $a=3, f^{\prime}(0)=\lim _{h \rightarrow 0}$

Def. e is the number such that $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=$
We have: $\frac{d}{d x}\left(e^{x}\right)=$

NOTE:

ex. Find $g^{\prime}(x)$ if $g(x)=e x^{2}+2 e^{x}+x e^{2}+x^{e^{2}}$.

Product and Quotient Rules

ex. Let $f(x)=x^{2}$ and $g(x)=x+1$.
What is $\frac{d}{d x}[f(x) g(x)]$?

The Product Rule
If f and g are both differentiable, then

$$
\frac{d}{d x}[f(x) g(x)]=
$$

ex. Find each point at which $f(x)=x e^{x}$ has a horizontal tangent line.

The Quotient Rule: If f and g are both differentiable, then

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=
$$

$$
\text { ex. Find } f^{\prime}(x) \text { if } f(x)=\frac{4 x}{x^{2}+1}
$$

Find the equation of all horizontal tangent lines of the graph of $f(x)$.
ex. Find the equation of the normal line to $y=\frac{1}{x^{2}-2}$ at $x=2$.
ex. Find $f^{\prime}(4)$ if $f(x)=\frac{(\sqrt{x}-2)^{2}}{\sqrt{x}}$.
ex. If $h(x)=\frac{x^{2}-3}{x f(x)}, f(-2)=3$, and $f^{\prime}(-2)=\frac{1}{2}$,
find $h^{\prime}(-2)$.
ex. At what point(s) do the tangent lines to $y=\frac{x^{3}+x^{2}}{x}$ pass through the point $(2,-3)$?

