L7 Derivatives of Trigonometric Functions

Recall:
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} =$$

$$\lim_{\theta \to 0} \frac{\tan \theta}{\theta} =$$

$$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} =$$

$$\underline{\mathbf{ex.}} \quad \text{Let } f(x) = \begin{cases} \sin x & x < 0 \\ 1 - \cos x & x \ge 0 \end{cases}.$$

Is f(x) continuous at x = 0?

Find
$$f'(0)$$
 if possible, where $f(x) = \begin{cases} \sin x & x < 0 \\ 1 - \cos x & x \ge 0 \end{cases}$.

$$1) \frac{d}{dx}(\sin x) =$$

$$2) \; \frac{d}{dx}(\cos x) =$$

$$3) \; \frac{d}{dx}(\tan x) =$$

$$4) \; \frac{d}{dx}(\cot x) =$$

$$5) \frac{d}{dx} (\sec x) =$$

6)
$$\frac{d}{dx}(\csc x) =$$

ex. Find the slope of the tangent line to $f(x) = \sin x \cos x$ at $x = \frac{\pi}{3}$.

ex. Let $f(x) = \frac{1 - \tan x}{\sec x}$. Find f'(x) and each x-value for which the graph of f has a horizontal tangent line.

ex. If $f(x) = \frac{\sec x}{e^x}$, find the slope of the tangent line at $x = -\frac{\pi}{4}$.

Theorem (The Chain Rule):

If g is differentiable at x and f is differentiable at g(x), then the composite function

$$F = f \circ g = f(g(x))$$
 is differentiable and $F'(x) =$

Chain Rule (second version: rate of change) If y = f(u) and u = g(x) are differentiable functions, then

ex. Find
$$h'(x)$$
 for $h(x) = \sqrt{x^2 + 2x - 3}$.

ex. If
$$f(x) = (2e^x - 3x)^5$$
, find $f'(0)$.

Power Rule combined with the Chain Rule

If n is any real number and u = g(x) is differentiable, then

or

ex. If
$$g(x) = \frac{4}{\sqrt[4]{(3-2x^2)^3}}$$
 find $g'(x)$.

<u>ex.</u> If $f(x) = (2x + 3)^4 (2 - x)^3$, find f'(x). At which x-values does the graph of f(x) have a horizontal tangent line?

ex. Find and simplify f'(x) if $f(x) = \frac{x^2}{\sqrt{3-2x}}$. Find the slope of the tangent line to f(x) at x = 1.

Derivatives involving Exponential Functions

Recall that
$$\frac{d}{dx}(e^x) =$$

If u=f(x) is differentiable, we can apply the Chain Rule to find $\frac{d}{dx}(e^u)$:

 $\underline{\mathbf{ex.}}$ If $f(x) = e^{x+2\cos x}$, find f'(x).

Then find each x-value at which f(x) has a horizontal tangent line on $[0, 2\pi]$.

ex. Find f'(x) if $f(x) = e^{ax}$ for any constant a.

$$\underline{\mathbf{ex.}}$$
 Evaluate: $\frac{d}{dx} \left[\frac{(e^x - 2)^2}{e^x} \right]$

Derivatives involving trigonometric functions

 $\underline{\mathbf{ex.}}$ Find f'(x) for

a)
$$f(x) = \tan(x^3)$$

$$f(x) = \tan^3(x)$$

ex. Find the derivative of $f(x) = \sec^2(\sin 4x)$.

General Power Rule:
$$\frac{d}{dx}[u^n] = nu^{n-1}\frac{du}{dx}$$

$$\frac{d}{dx}(e^x) = \frac{d}{dx}(e^u) = \frac{d}{dx}(\sin u) = \frac{d}{dx}(\cos u) = \frac{d}{dx}(\cos u) = \frac{d}{dx}(\tan u) = \frac{d}{dx}(\sec u$$