L8 Rates of Change and Higher Derivatives
Average Rate of Change

Instantaneous Rate of Change

If $s=f(t)$ is the position of a particle moving in a straight line, then
ex. Suppose the position of a particle is given by

$$
s=f(t)=2 t^{3}-15 t^{2}+24 t,
$$

where t is measured in seconds and s in feet.
a) Find the velocity of the particle at any time t.
b) Find the velocity at $t=3$ seconds.
c) When is the particle at rest?
d) When is the particle moving in a positive direction?
e) Draw a diagram to represent the particle's motion.
f) Find the total distance the particle moves in the first six seconds.

Higher Derivatives

If $y=f^{\prime}(x)$ is differentiable, we can find its derivative, a new function called $f^{\prime \prime}(x)$.

The limit definition:

In the same way, the derivative of $f^{\prime \prime}(x)$ is $f^{\prime \prime \prime}(x)$, and in general, we denote the nth derivative of f as $f^{n}(x)$.

Other notation:

The second derivative plays an important role: It is the rate at which f^{\prime} changes.

Acceleration

g) Find the acceleration of $s(t)=2 t^{3}-15 t^{2}+24 t$ at any time t.
h) When is the particle speeding up and when is it slowing down?

