L9 Derivatives of Inverse Functions

Theorem. (Derivative of the Inverse)

Assume that f is differentiable and one-to-one with inverse $g(x) = f^{-1}(x)$. If b is in the domain of g and $f'(g(b)) \neq 0$, then g'(b) exists and

$$g'(b) =$$

ex. If $f(x) = x^3 - 2$ and g is the inverse of f, find a) g(x) and then find g'(x) directly.

b) g'(x) using the previous theorem.

Sometimes, we cannot find the inverse function explicitly.

<u>ex.</u> If g is the inverse of $f(x) = 2x - \sin x$, find

- a) $f(\pi)$
- b) $g(2\pi)$
- c) $g'(2\pi)$

<u>ex.</u> If g is the inverse of a differentiable function f(x) such that f(-1) = 8 and f'(-1) = 12, find g'(8).

Derivatives of Inverse Trigonometric Functions

$$\frac{d}{dx}(\sin^{-1}x) =$$

$$\frac{d}{dx}(\cos^{-1}x) =$$

$$\frac{d}{dx}(\tan^{-1}x) =$$

$$\frac{d}{dx}(\cot^{-1}x) =$$

$$\frac{d}{dx}(\sec^{-1}x) =$$

$$\frac{d}{dx}(\csc^{-1}x) =$$

ex. Let $f(x) = \sin^{-1}(2x - 1)$. Find the following: a) f'(x)

b) domain of f'(x)

c) domain of f(x)

Derivatives of General Exponential Functions

Recall
$$\frac{d}{dx}(e^x) =$$

$$\frac{d}{dx}(b^x) =$$

for
$$b > 0$$

Write
$$f(x) = b^x =$$

ex. Find the slope of the tangent line to $f(x) = 2^{\sec^{-1}(x)}$ at $x = \sqrt{2}$.

Derivatives of Logarithmic Functions

$$\frac{d}{dx}[\log_b(x)] =$$

$$\frac{d}{dx}[\ln(x)] =$$

By the Chain Rule, if g is differentiable,

$$\frac{d}{dx}[\ln(g(x))] =$$

or if u is a differentiable function of x,

$$\frac{d}{dx}(\ln(u)) =$$

$$\underline{\mathbf{ex.}}$$
 Find $\frac{d}{dx}[\ln(x^3)]$

$$\underline{\mathbf{ex.}}$$
 Find $\frac{d}{dx}[(\ln x)^3]$

ex. Find
$$f'(x)$$
 if $f(x) = \ln(\tan^{-1}(e^x))$.

Be careful of domain!

ex. Find the horizontal tangent lines of $f(x) = \ln(x^3 - 3x)$.

ex. Find f'(x) if $f(x) = \ln |x|$.

ex. Find the horizontal tangent lines of $f(x) = \ln |x^3 - 3x|$.

Log and implicit differentiation

Explicit Functions

$$\underline{\mathbf{ex.}}$$
 Find $\frac{dy}{dx}$ if $y - 2x = e^{\cos x}$.

Implicit Functions

ex. Consider the equation $x^2y - 4x = y^3$. If y is a differentiable function of x, can we find $\frac{dy}{dx}$?

NOTE: This equation implicitly defines more than one function y = f(x). We seek a formula for $\frac{dy}{dx}$ for all functions f(x) satisfying the above equation.

Implicit Differentiation requires the Chain Rule.

Consider the following examples:

$$\frac{d}{dx}(x) =$$

$$\frac{d}{dx}(x^2) =$$

Now suppose that y is a differentiable function of x.

$$\frac{d}{dy}(y^2) =$$

What is
$$\frac{d}{dx}(y^2)$$
?

To Differentiate Implicitly:

Assume y is a differentiable function of x.

- Differentiate both sides of the equation with respect to x.
- 2. Collect all terms involving $\frac{dy}{dx}$ on one side.
- 3. Rewrite by factoring out $\frac{dy}{dx}$.
- 4. Solve for $\frac{dy}{dx}$.

 $\underline{\mathbf{ex.}}$ Now we can find $\frac{dy}{dx}$ if $x^2y - 4x = y^3$.

<u>ex.</u> Find the slope of the tangent line to $x^2 + y^2 = 9$ at the point $(2, -\sqrt{5})$

a) Explicitly

Find the slope of the tangent line to $x^2+y^2=9$ at the point $(2,-\sqrt{5})$

b) Implicitly

c) Find an expression for $\frac{d^2y}{dx^2}$.

 $\underline{\mathbf{ex.}}$ Find $\frac{dy}{dx}$ if $y = \tan(xy)$.

We can also use "Implicit Differentiation" to find the derivative of inverse functions.

For example,
$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$
.

Recall the following: If x > 0 and y > 0,

$$1. \ln(xy) =$$

$$2. \ln \left(\frac{x}{y}\right) =$$

$$3. \ln(x^y) =$$

We can use these properties to write a complicated logarithmic function into a form involving sums and differences, which are easier to differentiate.

ex. Find
$$f'(x)$$
 if $f(x) = \ln \sqrt{\frac{x^2 + 2x}{2x - 6}}$.

Logarithmic Differentiation

- 1. Take natural logarithms of both sides of an equation y = f(x) and use the Laws of Logarithms to simplify.
- 2. Differentiate implicitly with respect to x.
- 3. Solve for $\frac{dy}{dx}$.

We can use the process of **Logarithmic Differentiation** to find the derivative of a complicated expression which does not contain logarithms initially:

ex. Find
$$f'(x)$$
 if $f(x) = \frac{\sqrt{2x-3}}{e^{2x} \sec x}$.

NOTE: For a, b constants

$$1. \frac{d}{dx}(a^b) =$$

$$2. \frac{d}{dx}([f(x)]^b) =$$

$$3. \frac{d}{dx}(a^{g(x)}) =$$

$$4. \frac{d}{dx}([f(x)]^{g(x)}) =$$

ex. Find the equation of the tangent line to $f(x) = x^{\ln x}$ at x = e.