Questions 1-11 are 6 points each.

1. Find each x-value on $[0,2 \pi)$ at which $f(x)=\frac{\sin x}{\cos x+\sin 2 x}$ has a vertical asymptote
2. Solve the inequality: $\frac{x^{2}}{x+6} \geq 3$
3. Let $f(x)=\frac{2}{x}$ and $g(x)=\frac{x}{x+1}$. Find $f \circ g$ and its domain.
4. The Intermediate Value Theorem guarantees a solution to $y=x^{3}-15 x+1$ in which intervals?
a. $[-2,1]$
b. $[-1,0]$
c. $[0,1]$
d. $[1,2]$
e. $[2,3]$
5. Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos (4 x)}{x^{2}}$
6. If $f(x)=\frac{x^{2}-2 x}{|x|}$ which of the following statements are true?
P. $\lim _{x \rightarrow 0^{-}} f(x)=-2$
Q. f has a removable discontinuity at $x=0$
R. $\lim _{x \rightarrow-\infty} f(x)=-\infty$
7. For what value of a is $f(x)=\left\{\begin{array}{cl}\frac{x}{a} & x \leq 2 \\ \frac{1}{x+1}-\frac{1}{3} & x>2\end{array}\right.$ continuous at $x=2$?
8. Find $f^{\prime \prime}(1)$ for $f(x)=x^{4} e^{x}$
9. Find the equation of the tangent line to $x^{4}+y^{4}=16$ at $(1, \sqrt{3})$
10. Find the derivative of $y=x^{\cos x}$ using logarithmic differentiation.
11. Find the derivative of $y=x^{3} \sin ^{-1} x$

Show all work for full credit.

1. Part a is 6 points, part b is 6 points, and part c is 3 points.

Let $f(x)=\left\{\begin{array}{ll}x^{2}+4 x & x<0 \\ 1-|x-1| & 0<x<3 . \\ \ln (x-3) & x>3\end{array}\right.$.
(a) Sketch the graph of $f(x)$.

(b) Find the limits:

1) $\lim _{x \rightarrow 3^{-}} f(x)=$
2) $\lim _{x \rightarrow 3^{+}} f(x)=$ \qquad
3) $\lim _{x \rightarrow 3} f(x)=$ \qquad
4) $\lim _{x \rightarrow 0} f(x)=$ \qquad
5) $\lim _{x \rightarrow 1} f(x)=$ \qquad
6) $\lim _{x \rightarrow \infty} f(x)=$ \qquad
(c) List all discontinuities of $f(x)$ and state whether they are jump, infinite, or removable.
2. The position of a ball thrown in the air in feet after t seconds is given by the function

$$
s(t)=40 t-16 t^{2}, t \geq 0
$$

(a) Find a formula for the average velocity of the ball on the interval from $t=2$ to $t=2+h$ for $h \neq 0$ (4 points)

Average velocity $=$
(b) Use a limit to find the velocity of the ball at the instant $t=2$ and include units in your answer (3 points)

Instantaneous velocity $=$
3. Evaluate the limit (8 points)

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{2}-5}}{2-x}
$$

\qquad
4. The position in meters of a particle moving along the s-axis after t seconds is

$$
s(t)=\frac{1}{3} t^{3}-\frac{5}{2} t^{2}+6 t \text { for } t \geq 0 .
$$

(a) Draw sign diagrams for the velocity and acceleration of the particle (4 points)
(b) When is the particle moving in a positive direction? (2 points)
(c) When is the particle moving in a negative direction? (2 points)
(d) When is the particle speeding up? (2 points)
(e) When is the particle slowing down? (2 points)

