1. The area under the curve $y=f(x)$ and above the x-axis on $[0,1]$ is represented by $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt[3]{\frac{i}{n}} \frac{1}{n}$. Find the area.
2. Find min and max values of $y=\sin ^{2} x+\sin x$ on $[0,2 \pi]$
3. Find critical numbers of $y=x^{2} e^{x}$
4. Evaluate $\int_{0}^{1} \frac{x^{2}-1}{x^{4}-1} d x$
5. Evaluate $\int \frac{3 x^{2}}{x^{3}-4} d x$
6. Evalute $\frac{d}{d x} \int_{0}^{x^{2}} \frac{t^{3}}{t^{3}+2} d t$
7. A soft drink dispenser pours a soft drink at the rate of $f(t)=\frac{20 t}{1+2 t^{2}} \mathrm{ml} / \mathrm{sec}$ where t is the elapsed time in seconds. How much of the soft drink is dispensed in the first three seconds?
8. Consider the region between the curve $f(x)=2+6 x^{2}$ and the x-axis on the interval [0,2]. Calculate R_{4}, find the Reimann Sum approximation R_{n}, simplify it, and find the exact area by taking the limit of R_{n} as $n \rightarrow \infty$
9. Sketch a graph of $f(x)=\frac{x^{2}-9}{x^{2}-x-2}$
10. Evaluate $\lim _{x \rightarrow \infty}\left(\frac{x}{1-x}\right)^{x}$
11. Let $G(x)=\int_{-2}^{x} g(t) d t$ where $g(t)=\frac{t\left(16-t^{2}\right)}{1+t^{4}}$. Which of the following statements is/are true?
P. $G(x)$ is increasing on the interval $(-2,2)$
Q. $G(x)$ is an antiderivative of $g(x)$
R. $G(x)$ has a local maximum at $x=4$
12. Find the value of the Mean Value Theorem implied by $f(x)=x-\ln x$ on the interval $[1, e]$
13. On which intervals is $f(x)=\cos ^{2} x-2 \sin x$ concave up on the interval $[0,2 \pi)$?

Free Response. Show all work for full credit.

1. (6 points) The radius of a circular oil spill is increasing at a constant rate of 1 meter per second. How fast is the area of the spill increasing when the radius is 20 meters?

2a. Find the point on the line $2 x+y=5$ that is closest to the point $(-3,1)$.

2b. Evaluate $\lim _{x \rightarrow 0} \frac{x^{3}}{\sin x-x}$

2c. Consider the graph of $y=f^{\prime \prime}(x)$ below. If $y=f(x)$ has horizontal tangent lines at $x=-2,1$, and 4 , then where must $f(x)$ have a relative min?

3. If $f=\frac{(x-1)^{2}}{x^{2}+1}$, then $f^{\prime \prime}(x)=\frac{2\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{4 x(3-x)^{2}}{\left(x^{2}+1\right)^{3}}$. Find the following:

Domain of f : \qquad Vertical asymptote(s): \qquad

Horizontal asymptote(s): \qquad
Note: $\sqrt{3} \approx 1.7, f(-\sqrt{3}) \approx 1.9$, and $f(\sqrt{3}) \approx 0.1$
(a) f^{\prime} and $f^{\prime \prime}$ number lines:
(b) x-intercept(s): $x=$ \qquad ; y-intercept: $y=$ \qquad (write the exact value)

(c) relative minimum at $x=$ \qquad relative maximum at $x=$ \qquad

(d) inflection point(s) at $x=$ \qquad
(e) Sketch the graph of $y=f(x)$ using the above information.

