The State of Computational Quantum Chemistry

Erik Deumens Quantum Theory Project University of Florida

Acknowledgements

- I thank all members of QTP and participants of the Sanibel Symposia over the past twenty-five years.
- They showed me the forest and the trees

 even the mushrooms growing on the forest floor.

Overview of the talk

- Molecule = nuclei + electrons
- Mean-field theory
- Many-body theory
- Density functional theory
- Time dependent theory
- Science: experiment, simulation, theory
- Mission: Impossible?

Message of the talk

There is a lot of

- exciting
- transformative

work to be done for a new generation of scientists and engineers

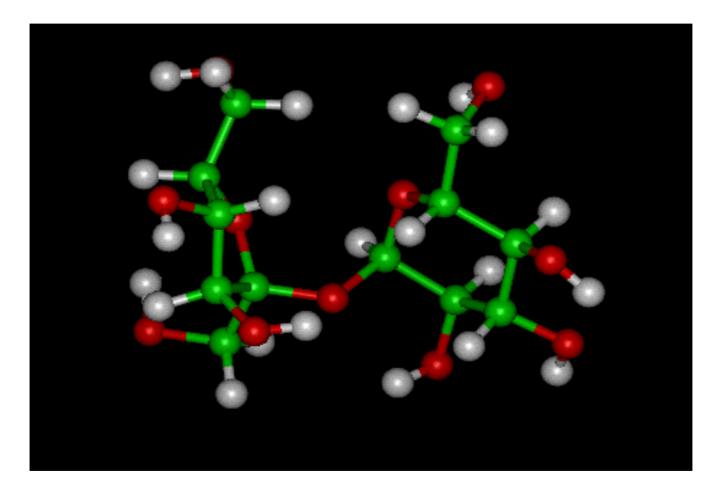
Molecules = n + e

- Atomic nuclei
 - Heavy
 - Hydrogen is 2,000 times heavier than e
 - Atomic charge Z
- Electrons are light and fast
 - 1 a.u. of speed is 1/137th of speed of light

Born-Oppenheimer approximation

• Fix nuclei at molecular geometry

$$-H = T_n + V_{nn} + T_e + V_{NA} + V_{ee}$$


Solve electronic structure/motion first

$$-H_{el} = V_{nn} + T_e + V_{NA} + V_{ee}$$
$$-H_{el} \phi(r|R) = V(R)\phi(r|R)$$

- Solve nuclear motion next $-(T_n + V(R)) \chi(R) = E\chi(R)$
- Result wave function $\Psi(r,R) = \chi(R)\varphi(r|R)$

Molecular structure of Sucrose

from www.chemcases.com/olestra/images/sucrose.jpg

Nuclei-electron correlation

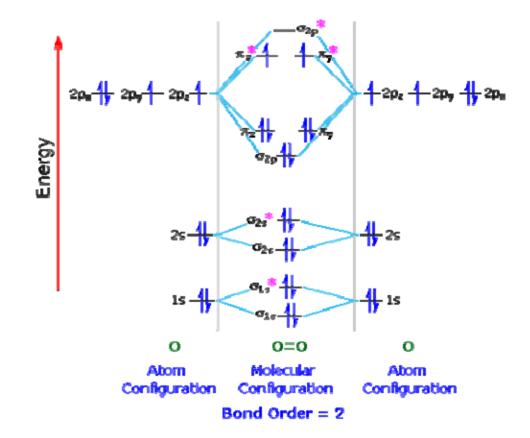
- Correlation between nuclei and electrons
 - is very strong
 - electrons bunch up close to atomic nuclei
 - BO parameter $\kappa^2 = 1/\sqrt{M} = .02$ to .01
 - Non-adiabatic corrections are small
- Diabatic approximation
 - Nuclei and electrons as independent particles
 - is a **poor starting point** for molecules

Mean-field theory

- Electrons have spin
 - Spin up is $\alpha,$ spin down is β
- Electronic wave function
 - Independent particle model
 - Pauli Exclusion Principle
 - Only one electron in every state $\rightarrow \phi(r|R)$ antisymmetric

Hartree-Fock theory

- $\varphi(r|R)$ = determinant of spin-orbitals
- Spin-orbitals are solutions of


 $-F \psi_i(r) = \varepsilon_i \psi_i(r)$

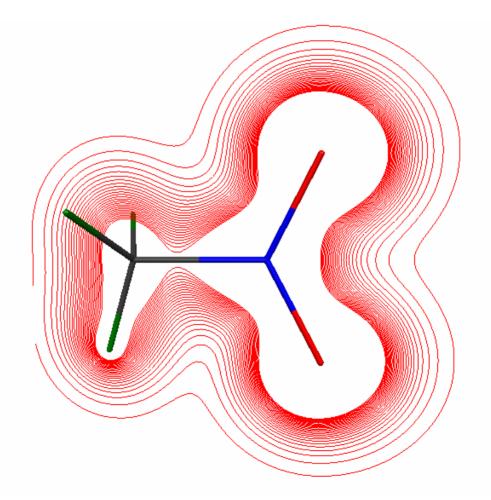
- $-\epsilon_i$ are the spin-orbital energies
- F is the Fock operator
- F depends on all occupied $\psi_i(r)$, i=1,...,N
- Equation is solved iteratively

 Self-consistent field (SCF) method

Molecular orbital diagram for O₂

http://infinity.usanethosting.com/Tuition/MolecularOrbitalTheory_OxygenMolecule.gif

Hartree-Fock 2


- The wave function $\varphi(r|R)$
 - Is invariant under transformations of occupied orbitals
 - This follows from properties of determinants

Restricted Hartree-Fock

- RHF: Uses same spatial function for both spin states
 - Most commonly used
- Unrestricted HF (UHF)
 - Different orbitals for different spins
- Restricted Open-shell HF (ROHF)
 - Same orbitals for core α and β spin-orbitals
 - Different orbitals for unmatched α spins

HF electron density for CH₃NO₂

produced by Ann Melnichuk – contour values 0.2

Overview of many-body theory

- Wave function theory
- Density functional theory
- Other theories
- Electronic correlation

- Many-body (MB) perturbation theory (PT)
 - $-H = H_0 + \lambda V$

$$-H_0\Psi_{0n}=E_{0n}\Psi_{0n}$$

$$- \varphi(\mathbf{r}|\mathbf{R}) = \Psi_{00} + \lambda \Psi_1 + \lambda^2 \Psi_2 + \dots$$

$$-E_1 = \langle \Psi_{00} | V | \Psi_{00} \rangle$$

- With HF as reference Ψ_{00}
 - first order vanishes
 - Hence MBPT(2) is the first order that matters

- Configuration Interaction (CI)
 - Build configurations from HF reference
 - $\phi(\mathbf{r}|\mathbf{R}) = \mathbf{c}_0 \Psi_0 + \mathbf{c}_i^a \Psi_i^a + \mathbf{c}_{ij}^{ab} \Psi_{ij}^{ab} + \dots$
 - Diagonalize the big Hamiltonian super matrix
 - $-H \phi(r|R) = E \phi(r|R)$
 - To determine the c's
- The full CI wave function φ(r|R)
 Does not depend on the reference orbitals

- Multi-reference theory
 - Multi-configuration self-consistent field (MCSCF)
 - Complete active Space (CAS) MCSCF
 - Multi-reference (MR) CI
 - MR-PT

- Coupled Cluster theory
 - Uses an infinite subsequence of configurations
 - Nonlinear equations must be solve iteratively
 - CCSD(T) considered "best of breed"
 - (T) means perturbative triples
- MR-CC has been formulated
 - Many flavors
 - None completely satisfactory

- R₁₂ theory
 - Adds explicit factors depending on
 - Inter-electron distance $R_{12}=|r_1 r_2|$
 - Like exp(-a R_{12})
 - To the many-electron wave function
- Approximations must be used to evaluate some many-electron integrals
- Improves quality of results a lot

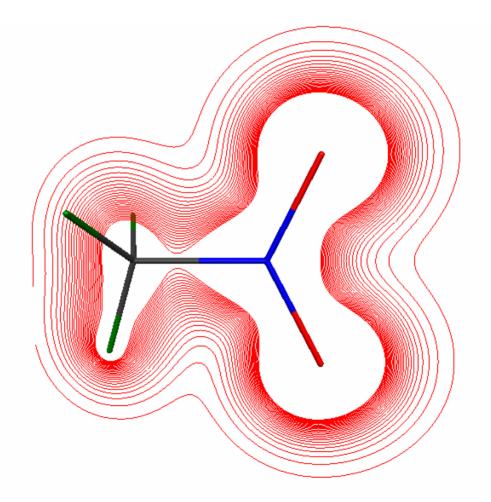
Density Functional Theory

- Determine electron density
 - Include correlation effects
 - Functional is not exactly known
 - Some functionals have empirical content
- Single determinant representation of the density
 - Kohn-Sham problem is similar to Hartree-Fock problem
 - Determines energies ϵ_i and orbitals $\psi_i(r)$

Analytical or numerical?

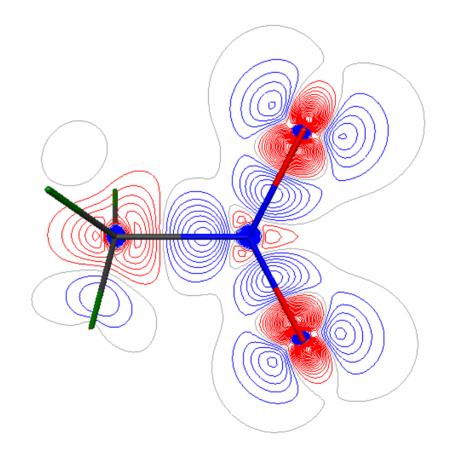
- Wave function and density
 - Are built with single particle orbitals
 - These can be analytical
 - Expanded in gaussian type orbitals
 - Or numerical
 - Represented on a grid

Other theories


- Quantum Monte-Carlo (MC) methods
 - Previous methods use basis functions
 - Diffusion MC is most successful for quantum chemistry
- Density matrix theory
- Cumulant theory
- Renormalization group theory
- Semi-empirical theories
 - Model Hamiltonians

Density of electrons

- The electronic density ρ(x)=ρ(x,y,z)
 Is dominated by mean field behavior
 - The difference between SCF and CCSD densities in the next plot cannot be seen!
- DFT
 - Has correlation implicit, not explicit
 - Density looks the same as SCF and CCSD


HF electron density for CH₃NO₂

produced by Ann Melnichuk – contour values 0.2

HF-CCSD density diff for CH₃NO₂

produced by Ann Melnichuk- contour values 0.02

Electronic correlation

Classified into three types

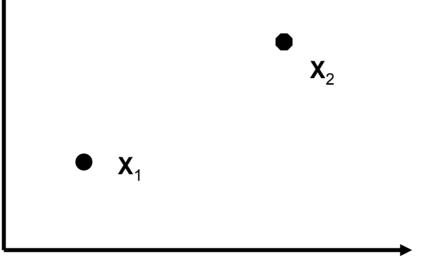
- Essential correlation
- Dynamic correlation
- Polarization correlation

Essential correlation

- Describes quantum entanglement effects
- Needs multi-reference wave functions for rapid convergence
- CI, PT and CC often need very high order expansions to describe MR character

Dynamic correlation

- Describes electrons avoiding each other because of Coulomb repulsion


 inside electron-filled medium
- PT and CC describe this correlation very well
- DFT describes this correlation implicitly

 Any density functional is consistent with a matching correlation hole

Polarization correlation

- Can be viewed as a special case of dynamic correlation
- Describes electrons avoiding each other because of Coulomb repulsion
 - Through vacuum, as opposed to in bulk
 - Carries across a long distance
 - Creates van der Waals force

- How to study correlation?
 - two-point function (statistics)
 - two-electron density (quantum mechanics)
 - One density ρ(x₁) shows probability to find an electron at x₁. We can show this in 3D.
 - Two density Γ(x₁,x₂) shows probability to find one electron at x₁ and another at x₂ at some time
 - To show this, we pick x₁ and plot Γ(x₁,x₂) as a function of x₂ in 3D.

A two-dimensional cut through a two density or two-point function One point is the reference point, the other point is the variable

Hartree wave function (not for electrons)

 $-\,\Gamma(\boldsymbol{x}_1,\boldsymbol{x}_2)=\rho(\boldsymbol{x}_1)\,\rho(\boldsymbol{x}_2)$

- Pure product \rightarrow no statistical correlation
- HF wave function (anti-symmetric)
 - $\Gamma(\mathbf{x}_1, \mathbf{x}_2) = \rho(\mathbf{x}_1) \ \rho(\mathbf{x}_2) \gamma(\mathbf{x}_1, \mathbf{x}_2) \ \gamma(\mathbf{x}_2, \mathbf{x}_1)$
 - Involves the one-density matrix $\gamma(\mathbf{x}, \mathbf{x'})$
 - Not a product \rightarrow statistical correlation
 - Not called correlation in quantum mechanics

- Why is it a hole?
 - Electrons repel each other with the Coulomb force
 - The chance to find electron 2 close to electron
 1 is less than to find it some distance away
 - At very large distances the chance goes down again because both electrons are bound in the molecule

Time dependence

- Ab-initio molecular dynamics
 - Newtonian dynamics of nuclei on any ab-initio potential energy surface (PES)
 - including DFT
 - Up to 1,000 atoms
- Quantum molecular dynamics
 - Full quantum mechanical wave packet propagation on PES
 - Limited to 4 or 5 atoms

Time Dependence 2

- Electron Nuclear Dynamics
 - Newtonian dynamics of nuclei
 - With full quantum dynamics of the electrons
 - In a dynamic, complex wave function
 - single determinant
 - multi-configuration CAS
 - Not a stationary state for nuclear geometry
 - Electrons have momentum too
 - 10 to 20 atoms

5 keV impact: $H^+ \rightarrow (H_2O)_2$

produced by Olivier Quinet

- Show movies with Windows Media Player in full-screen mode
 - Impact: H++H2Odimer-Q3-3.25.mpg
 - Breakup: H++H2Odimer-Q4-4.02.mpg
 - Published in IJQC 2008

Scientific method

- Experiment and simulation
 - Have become very similar in practice
 - Used to understand complex scientific problems
 - Prepare the problem
 - Validate assumptions
 - Perform experiment/simulation
 - Draw conclusions
 - Repeat

Scientific method 2

- Simulation
 - There is need for reliable and practical estimate of accuracy
- Theory
 - Development of new methods is still needed
 - E. g. known accuracy estimates are
 - Too expensive
 - Too hard to implement

Summary: accomplishments

- Good practical methods exist
 - Electronic density
 - Molecular geometry
 - Vibrations, electronic excitations, molecular dynamics
 - DFT is most useful
 - Correlation hole is implicit
 - Wave functions give correlation details
 - Too expensive

Mission: Impossible?

- Is it all done?
- Did the "old guard" finish all interesting problems?
- Is there anything left that is exciting?
 YES! A LOT!

Mission: open problem 1

- Correlation hole
 - Accurate and practical description
 - Base configurations with explicit correlation hole

Mission: open problem 2

- Protein folding
 - Locality in space and time
 - Speed of light limits BO approximation
 - At the speed of light one side of a protein is 1 fs away from the other side
 - Mean field is the wrong starting point
 - Instantaneous force fields miss important physics and are too "bouncy"

Please take on the challenge!