
SIAL Course Lect 1 & 2 July 2009 1

SIAL Course Lectures 1 & 2

Victor Lotrich, Mark Ponton, Erik Deumens,
Rod Bartlett, Beverly Sanders

QTP University of Florida
AcesQC, LLC

Gainesville Florida

SIAL Course Lect 1 & 2 July 2009 2

Training goals

Understand the parallel architecture behind
the language
Learn SIAL language elements
Learn to program in SIAL
Apply the programming strategy

Decide on the algorithm
Analyze the algorithm
Design the implementation
Write the SIAL program
Write a test program

SIAL Course Lect 1 & 2 July 2009 3

Course overview

Lectures
Super instruction architecture (SIA) for
software design
Language definition for SIAL
The workings of SIP
Performance
Algorithms

SIAL Course Lect 1 & 2 July 2009 4

Course overview

Workshop
Study a selection of SIAL programs that
show the capabilities
Modify them
Run them

SIAL Course Lect 1 & 2 July 2009 5

Lecture 1: Architecture

SIAL Course Lect 1 & 2 July 2009 6

Serial computers: processing

CPU or core
Central processing unit

Is always in control
Executes instructions
Performs

Logical tests
Integer and float operations

SIAL Course Lect 1 & 2 July 2009 7

Serial computers: data

Moves data to and from RAM
Random access memory

Directs data to and from DASD
Direct access storage device

Sends data to and from networks
Communication with remote processors
and storage

SIAL Course Lect 1 & 2 July 2009 8

Parallel computers: processing

Multiple CPUs or cores
Must coordinate activity
All processing requires communication
Some general types of processing

Master – worker
Master tells workers what to do

Client - server
Clients ask one or more servers what to do

SIAL Course Lect 1 & 2 July 2009 9

Parallel computers: data

All cooperating processors need data
Managing the data requires coordination

Naturally parallel
Every computation works on a pre-assigned piece

Work on shared data
Requires synchronization primitives

Between two or few CPUs
exchange messages or share a token or lock

Between all or most CPUs
Post barriers and send broadcast messages

SIAL Course Lect 1 & 2 July 2009 10

Programming

Serial programming
Compose for piano, guitar, or flute

Parallel programming
Compose for quartet or ensemble

Multi-core parallelism: 4 to 8 way
Compose for a philharmonic orchestra

Massive parallelism: 1,000 to 100,000 way

SIAL Course Lect 1 & 2 July 2009 11

Modern computers

Problem with modern computers
CPUs (cores) are very fast (x 1,000)
RAM is much slower (x 1)
DASD and network are glacial in
comparison (x .001)

Need for delicate orchestration of
Processing of data
Movement of data

SIAL Course Lect 1 & 2 July 2009 12

SIA: Super Serial

Super Instruction Architecture
First guiding principle

Parallel computer = “super serial”
computer

Number -> super number = block
CPU Operation -> super instruction =
subroutine
Data movement to RAM, DASD -> move
blocks to local or remote locations

SIAL Course Lect 1 & 2 July 2009 13

SIA: simple code

Second guiding principle
Separate algorithm from execution

Define a simple language to express the
algorithm
Leave details of execution to a lower level
The first principle allows just that

Because every block operation takes time
No operation is significantly faster than any other
operation
(As is the case in a modern microprocessor.)

SIAL Course Lect 1 & 2 July 2009 14

SIA: How does it work?

Analyze the problem
Pick the algorithms

Write SIAL program
Super instruction assembly language

Details of parallelism are not visible
SIP runs the SIAL program

Super instruction processor

Knows and optimizes use of hardware
User can tune execution

SIAL Course Lect 1 & 2 July 2009 15

Execution flow

ACES III

algo.sio

SIAL compiler

algo.sial

input

SIAL Course Lect 1 & 2 July 2009 16

Lecture 2: Language

SIAL Course Lect 1 & 2 July 2009 17

SIAL Programmer Guide

The full manual is available online
http://www.qtp.ufl.edu/ACES
-> Documentation

SIAL is case insensitive like Fortran,
not case sensitive like C or Java
Lines are 256 characters and cannot
be continued
marks that the rest is a comment

http://www.qtp.ufl.edu/ACES

SIAL Course Lect 1 & 2 July 2009 18

Constants

Universal constants
Defined from ZMAT or JOBARC

scfenerg <- JOBARC
scfiter <- SCF_MAXCYC in ZMAT

MO constants
These count in segments, not orbitals

nocc, naocc, nbocc
nocc and naocc are of different type

SIAL Course Lect 1 & 2 July 2009 19

More constants

Static c(mu,p)
No-spin orbital transformation matrix
Mu is MOINDEX 1:norb
P is AOINDEX 1:norb
Written by SCF program to JOBARC
Read from JOBARC by other programs

SIAL Course Lect 1 & 2 July 2009 20

Predefined special instructions

There is a list of special instructions
Block_to_list X

Write the blocks of array X to a file for reading
by later programs, or the same one for
restart.

SIAL Course Lect 1 & 2 July 2009 21

Declarations

MOINDEX p=1,nocc
Declares p as an index counting segments in the
MO orbital space without spin
MOINDEX q=1,naocc is an error because naocc
is for alpha spin
The actual range of segments is unknown until
run time.

INDEX i=1,20
Declares a simple index, e.g. for loop control

SIAL Course Lect 1 & 2 July 2009 22

Declarations

SCALAR a
A single floating point number

STATIC a(p,q)
An array allocated locally for each core
with a separate malloc intended to be
static
p and q must have been declared first

SIAL Course Lect 1 & 2 July 2009 23

Declarations

LOCAL b(p,q)
An array allocated locally on the block
stack so that it can be created and
deleted
Are explicitly ALLOCATEd and
DEALLOCATEd to manage RAM usage
(local operations)
Can be partially ALLOCATEd to save
space ALLOCATE b(*,p)

SIAL Course Lect 1 & 2 July 2009 24

Declarations

TEMP c(a,b,d,e)
A single block of data that is stored
locally and can be used as if it is an array
in multi-step computations
The block behaves like a super register
There is no coherence between the same
TEMP on different processors

SIAL Course Lect 1 & 2 July 2009 25

Declarations

DISTRIBUTED v(mu,nu,p,q)
All blocks are distributed among all cores
The distribution is deterministic but
unknown to the SIAL programmer, it is
determined at run time
Accessed with PUT and GET
Are explicitly CREATEd and DELETEd to
manage RAM usage (global operations)

SIAL Course Lect 1 & 2 July 2009 26

Declarations

SERVED s(mu,nu,lambda,sigma)
All blocks are written to DASD
The DASD are managed by a group of
dedicated cores who manage moving the
blocks between their RAM and DASD
and send them to worker cores
Accessed with PREPARE and REQUEST
Implicitly created with PREPARE and
explicitly DESTROYed

SIAL Course Lect 1 & 2 July 2009 27

Control statements

SIAL myprog / ENDSIAL myprog
Main SIAL program

PROC suba / ENDPROC suba
SIAL procedure
Procedures must be declared inside a program
Organize code
Execute in global scope

RETURN
CALL suba

SIAL Course Lect 1 & 2 July 2009 28

Control statements

PARDO mu,nu,lambda,sigma WHERE
MU<NU

Distribute the work inside the body over
available worker cores
Assigning sets of index values to each
core
Load balancing algorithms are used to
optimize performance at run time

SIAL Course Lect 1 & 2 July 2009 29

Control statements

DO j / END DO j
Simple iteration over all values of I

CYCLE j
Skip the rest of the DO-body and start at
the top with the next value of j

EXIT j
Exit the DO / ENDDO block and resume
execution after the block

SIAL Course Lect 1 & 2 July 2009 30

Control statements

IF test / ELSE / ENDIF
Conditional execution of code blocks
Conditions are of the form k < j, etc.

SIAL Course Lect 1 & 2 July 2009 31

Operations

+ - * ^ == < > <= >= && | !
+= -= *=
ALLOCATE v(mu,*,nu,*)

Allocate the blocks of a LOCAL array
DEALLOCATE v

SIAL Course Lect 1 & 2 July 2009 32

Operations

CREATE w / DELETE w
Allocate and free all blocks of a
distributed array w

PUT w(mu,nu,p,q) += tmp1(mu,nu,p,q)
Add block of tmp1 to block of w

GET w(mu,nu,p,q)
Initiate transfer of a block of w

SIAL Course Lect 1 & 2 July 2009 33

Operations

PREPARE s(mu,nu,p,q) =
tmp1(mu,nu,p,q)

Store block of tmp1 in served array s
REQUEST s(mu,nu,p,q) nu

Initiate transfer of a block of s
Argument nu is “fast” index
Allows SIP to pre-fetch

DESTROY s

SIAL Course Lect 1 & 2 July 2009 34

Operation statements

v3(p,q,r,s) = v2(p,q,r,mu) * c(mu,s)
Is an assignment and a contraction

v3(p,q,r,s) = v1(p,q) * v2(r,s)
Is an assignment and a tensor product

COLLECTIVE a+=b
All cores add b to a

SIAL Course Lect 1 & 2 July 2009 35

Operation statements

EXECUTE specinstr arg1,arg2,arg2
Execute the named special instruction
Supply arguments
The instruction must be registered and
compiled
The arguments must match what the
instructions expects
No checking is done, the instruction must
do its own checking if necessary

SIAL Course Lect 1 & 2 July 2009 36

Programming hints

SERVED arrays should be large
If they are small, they may reside in RAM of the
workers
Then they behave like DISTRIBUTED arrays,
which are preferred

Avoid accessing arrays inside inner loops
Staging blocks can have good performance
impact

from DISTRIBUTED into TEMP
from SERVED into DISTRIBUTED into TEMP

SIAL Course Lect 1 & 2 July 2009 37

Programming hints

Accessing individual numbers inside
blocks

Is like “super bit manipulation” slow
Requires special instruction

Example: energy_denominator
Should be rare to maintain good
performance

SIAL Course Lect 1 & 2 July 2009 38

Programming hints

PARDO lambda,mu
Load balancing works well, but is not
perfect
Think carefully about putting IF inside

A restriction lambda or mu inside a PARDO
Results in now work for some cores

	SIAL Course Lectures 1 & 2
	Training goals
	Course overview
	Course overview
	Lecture 1: Architecture
	Serial computers: processing
	Serial computers: data
	Parallel computers: processing
	Parallel computers: data
	Programming
	Modern computers
	SIA: Super Serial
	SIA: simple code
	SIA: How does it work?
	Execution flow
	Lecture 2: Language
	SIAL Programmer Guide
	Constants
	More constants
	Predefined special instructions
	Declarations
	Declarations
	Declarations
	Declarations
	Declarations
	Declarations
	Control statements
	Control statements
	Control statements
	Control statements
	Operations
	Operations
	Operations
	Operation statements
	Operation statements
	Programming hints
	Programming hints
	Programming hints

