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Abstract The recent rigorous derivation of the Born

rule from the dynamical law of quantum mechanics

[Phys. Rep. 525(2013) 1-166] is taken as incentive to

reexamine whether quantum mechanics has to be an

inherently probabilistic theory.

It is shown, as an existence proof, that an alter-

native perspective on quantum mechanics is possible

where the fundamental ontological element, the ket, is

not probabilistic in nature and in which the Born rule

can also be derived from the dynamics.

The probabilistic phenomenology of quantum me-

chanics follows from a new definition of statistical state

in the form of a probability measure on the Hilbert

space of kets that is a replacement for the von Neumann

statistical operator to address the lack of uniqueness in

recovering the pure states included in mixed states, as

was pointed out by Schrödinger.

From the statistical state of a quantum system, clas-

sical variables are defined as collective variables with

negligible dispersion. In this framework, classical vari-

ables can be chosen to define a derived classical system

that obeys, by Ehrenfest’s theorem, the laws of classical

mechanics and that describes the macroscopic behavior

of the quantum system.

The Born rule is derived from the dynamics of the

statistical state of the quantum system composed of the

observed system interacting with the measurement sys-

tem and the role of the derived classical system in the

process is exhibited. The approach suggests to formu-

late physical systems in second quantization in terms of
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local quantum fields to ensure conceptually equivalent

treatment of space and time.

A real double-slit experiment, as opposed to a thought

experiment, is studied in detail to illustrate the mea-

surement process.
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1 Introduction

The formulation of quantum mechanics (QM) is consid-

ered to have been completed around 1930. However, the

way QM describes classical physics and includes classi-

cal mechanics (CM) and the way experimental obser-

vations on quantum systems fit into the theory has not

yet been resolved in a totally satisfactory way. There is

general agreement on how to use QM correctly. The ac-

complishments, in the form of technologies that are part

of modern life, are evidence that the approach is cor-

rect and effective. In contrast, there are legitimate and

deep mathematical and philosophical questions that do

not have satisfactory answers, or even a generally ac-

cepted approach to finding answers for them [50,29,91,

96]. The book by Greenstein and Zajonc [44] gives a

beautiful summary of these issues including a detailed

discussion of real experiments, as opposed to thought

experiments, to provide context and evidence for this

debate.

The problem of experimental measurements on mi-

croscopic quantum systems is inextricably linked to the
problem of describing macroscopic classical systems,

that satisfy classical laws, as an integral and logically

consistent part of QM. The recent work by Allahverdyan,

Balian, and Nieuwenhuizen [3] provides an excellent

overview of the issues. It also formulates a mathemati-

cally detailed and logically precise solution to the prob-

lem. We will refer to the authors as “ABN” and use

their work as the starting point for our discussion; we

refer the reader to their work for a thorough review of

previous work and alternative formulations.

Every theory in physics can be approached from two

opposite ends: One can start from experiment and ob-

servations to formulate laws and procedures to predict

the outcome of experiments. This is called the empiri-

cist view, presented, for example, in the book by de

Muynck [60]. Or, one can start from a minimal set of

concepts and principles to formulate laws of Nature and

rigorously derive the phenomenology that can be veri-

fied by experiments, as is done for classical physics in all

textbooks, for example, on Newtonian mechanics. By

the authority of experimental verification, the concepts

are then viewed as the reality behind the phenomena,

so that we may refer to this approach as the realist

view. The knowledge of physics grows down from the

empiricist end towards the foundations by increasing

systematization and clarification, and it grows up from

the realist end towards the empirical phenomena by

precise, mathematical derivation from an assumed set

of foundation principles. It can be said that the prob-

lem in the foundations of QM is the unresolved tension

between the empiricist and realist views.

Thus far no consensus has been reached as to what

set of assumptions allow for a rigorous and fully under-

stood derivation and explanation of all quantum phe-

nomena. All textbook expositions1 of QM include the

Schrödinger equation (SE), Eq, (A.11), and the math-

ematical framework of Hilbert spaces to formulate it.

But there is a varying number of additional principles

or assumptions to get to the theory for the working

physicist [33,61,91], with the primary assumption to be

added being Born’s probability rule Eq. (A.14), in one

form or another, to describe the outcome of the mea-

surement process carried out on a quantum system.

This paper presents a derivation of the complete

quantum phenomenology from the realist end using only

the SE, with the Hilbert space context in which it is

formulated, as the foundation. We consider the object

controlled by the SE, namely the ket, to be as real as the

“objects with substance” governed by Newton’s Law of

motion in classical mechanics.2 We present a deriva-

tion that shows that the standard textbook presenta-

tion of QM [91], i.e. the formalism with the framework

of associated rules, is correct. Thus, theorists can in-

deed claim that QM provides, contrary to d’Espagnat’s

caution [28, p. 404], an ontological foundation for QM,

i.e. that the “completeness hypothesis” [28, §4.2] is cor-

rect.

ABN [3,4] provide a detailed and rigorous deriva-

tion3 from the Liouville von Neumann equation (LvNE),

Eq. (B.10), of the process that is captured by Born’s

rule as a shortcut in a phenomenological way. Their de-

scription is minimalist, in that it does not involve spe-

cial assumptions, and it approaches the measurement

process from the empiricist point of view. It establishes,

for the first time with full rigor, that the SE can and

does describe all dynamics in QM. In other words, ABN

prove that the formulation of the uncertainty princi-

ple [48] and the probability rule [18,19] provide only a

1 See Appendix A for a short formulation of QM.
2 See Appendix C.1 for details.
3 For ease of reference, the description of the measurement

process derived by ABN is summarized in Appendix C.2.
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phenomenological shortcut between theory and experi-

ment, not a principle of foundation.

I interpret the result by ABN to mean that the dig-

ging from the empiricist end has hit a firm foundation

for QM. That in turn warrants a fresh investigation

from the realist end as to whether all phenomenology

can be derived from a set of foundation principles. This

inspires a constructive formulation for QM

1. that starts with a deterministic mechanics of kets,

largely hidden from experiment (§2.1),

2. then puts a probability measure on top of the phase

space of kets to get the probabilistic features of QM

(§2.2), and

3. finally extracts a description of emergent, classical

systems from the probability measure that is the

statistical state (§2.3).

We will argue (§2.2) that the von Neumann density

operator4 is not quite right as a statistical probabil-

ity distribution for kets as the basic dynamical object

in QM. As pointed out early on by Schrödinger [75,

76,63,23], there is no unique set of kets and associated

probabilities that can be recovered from a given density

operator. Therefore, we will use a true probability mea-

sure on Hilbert space to describe the statistical state in

QM instead.

To avoid confusion between classical systems de-

scribed by classical theories of physics and the emergent

systems in macroscopic quantum systems that satisfy

the laws of classical physics, we will refer to the latter

as q-classical, following the terminology of q-bit and

qubit in quantum computing and q-probability intro-

duced by ABN [4].

After presenting the construction of q-classical sys-

tems and their dynamical law within QM, we apply the

formalism to an experimental realization of a double-

slit experiment [86] as an example in Section 3. First

we describe the experiment from the empiricist view,

applying the work of ABN [3,4]. We analyze in Sec-

tion 3.2 the role of the position observable for the par-

ticles in the experiment. We will argue that position

is inadmissible as an observable, and that all physical

systems need to be described in terms of fields so that

position is a coordinate, like time, even in the case of

non-relativistic QM.

The main result of the paper is then the realist ex-

planation of what happens, in full detail, in the double

slit experiment and, as will be obvious, by natural ex-

tension to any measurement on quantum systems:

1. A fully deterministic evolution of kets flows in Hilbert

space.

4 See Eq. (B.8) in Appendix B.3 for the definition.

2. The high-precision statistical state of the quantum

system and the large-system statistical state of the

measurement apparatus, consisting of many mini

detectors, evolve together. The statistical state gives

the probability of which mini detector is triggered

to emit a signal strong enough to be amplified and

recorded.

3. The macroscopic classical variables of the combined

system, mostly the macroscopic apparatus, as col-

lective variables determined by the statistical state

evolve deterministically according the classical dy-

namical laws to produce the visible, recorded results

of the measurement.

For the double-slit experiment, the electron quantum

field goes through both slits and the detector randomly

picks the location where the quantum field produces a

localized recording of an electron excitation. A deriva-

tion of Born’s rule follows in Sect. 3.4. The paper con-

cludes, in Section 4, with a summary and outlook.

2 Realist formulation of statistical QM

Experiments on quantum systems are probabilistic so

that QM is often said to be intrinsically probabilistic

[50,27,42,91,3]. As a result, a full discussion of QM

must take place in the context of statistical QM [7,60].

In this paper, QM is formulated with the same math-

ematical structure as statistical classical mechanics,5

i.e. with a deterministic mechanics at the foundation

and a probability measure on top of the phase space

to describe the statistics. We motivate this approach as

follows.

What if Einstein and Bohr were arguing about the

wrong issue? Both were thinking in terms of an essen-

tially classical ontology, which we call the Newton-

Maxwell ontology.6 This ontology had successfully

absorbed the conceptual shifts introduced by relativ-

ity as well as some shifts forced by QM, as shown by

their early success with photons [35] and the hydro-

gen atom [14], respectively. This seemed to indicate

that the ontology could handle the “quantum condi-

tions” as well. Then Heisenberg, Born, Jordan [47,21],

Schrödinger [74,72,73], and Dirac [32] found the correct

mathematical formulation of QM consisting of the spec-

ification of states and the dynamical law that governs

their evolution. Heisenberg and Born, in their initial ap-

proach advocated to let the mathematics be the guide

to solve the quantum problem [50,42]. In other words,

they advocated for a new ontology, that we call the

5 A brief summary of non-equilibrium statistical mechanics,
both classical and quantum can be found in Appendix B.
6 The definition is given in Appendix C.1.
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Heisenberg-Dirac ontology.7 We will follow their

lead in this paper.

The initial concerns focused on the violation the

Bell inequalities [10,60] implying nonlocality in QM in

the sense that things can happen faster than the speed

of light. Recent discussion in the literature around the

loophole in Bell’s theorem clearly established that such

conclusions were unwarranted [62,55,56,30]. A second

motivation for the approach taken in this paper comes

from interpreting Bell’s theorem, and its generalizations

including the recently published theorem of Pusey, Bar-

rett, and Rudolph [65], as the proof that the inner work-

ings of QM do not fit a Newton-Maxwell ontology. In

other words, we take it as encouragement to consider

the ket as the fundamental and irreducible dynamical

object for QM, as in the Heisenberg-Dirac ontology.

2.1 Deterministic dynamics of kets

Our formulation of QM starts, as in all textbooks,8 by

defining the Hilbert space of kets and adopting

1. Assumption A.1, kets are basic, and

2. Assumption A.2, the SE Eq. (A.11) governs their

dynamics.

The SE propagates any ket in a fully deterministic way

to time t from its initial condition at time s as given by

the evolution operator Eq. (A.12)

Ψt = U(t− s)Ψs. (2.1)

We will take it as a physical reality that all kets

evolve and keep evolving. They can become distorted

by interactions with other kets; they will get entangled

when composite systems are considered.9 Kets do not

collapse or disappear.

Observables are introduced as Hermitian or self-

adjoint operators. With the spectral representation [67]

of self-adjoint operators, the kets can be given a realiza-

tion as complex-valued square-integrable functions on

the combined spectrum of a complete set of commuting

observables.

Although the notion of expectation value of an ob-

servable A in a ket |Φ〉 can be computed as

a =
〈Φ|A|Φ〉
〈Φ|Φ〉

, (2.2)

7 See Appendix C.3 for the definition.
8 A brief summary of the formulation of QM is given in

Appendix A.
9 The composition of systems and the reverse, extracting

subsystems from systems, are two operations that show the
big difference between CM and QM, as discussed in Appendix
A.2 and A.3.

we do not assume any meaning related to statistics or

probability theory. Following ABN [4], we refer to such

mathematical quantities as q-expectations.

Let us consider the issue of what an experimental

observation of a ket would mean. Einstein and Bohr

assumed that the experimental data obtained was the

meaningful and complete information about the QM

state. What if it is not? The formalism tells us that the

ket (or the wave function as its representation on the

spectrum of some observables) is the full specification

of the state; a single number in the spectrum of the ob-

servable provided by a measurement is not a complete

specification.

Consider the measurement of spin. A spinor is deter-

mined by two complex numbers as a vector in a com-

plex two-dimensional Hilbert space. Allowing for the

normalization |c1|2 + |c2|2 = 1, that means a spinor is

specified by three real numbers. They can be meaning-

fully chosen as three Euler angles specifying the spinor

orientation in a frame in three dimensional space [90,

p. 94](
e−i

1
2 (ϕ+ψ) cos 1

2ϑ

ei
1
2 (ϕ−ψ) sin 1

2ϑ

)
. (2.3)

However, the way spin is measured, for example by

a Stern-Gerlach apparatus, only two numbers are ob-

tained: |c1| and |c2|. Can we build an experimental ap-

paratus that would find the axis defined by the spinor

and then produce the three Euler angles?

The situation gets worse with observables that have

continuous spectrum, e.g. position. Lundeen, Suther-

land, Patel, Stewart, and Bamber [59] carried out a

beautiful experiment measuring the wave function of a

photon (real and imaginary part) by scanning through

the range of the observable position. A desirable quan-

tum experiment would produce, in a single interaction,

the full complex wave function Ψ(x) on the entire spec-

trum, which is a faithful representation of the quantum

state of the system. Such an experiment would be the

conceptual equivalent to the measurement of the po-

sition and velocity of a classical system like a planet,

leading to the full determination of its state (for the

purposes of celestial mechanics). This does not exist

for QM. The fact that experiments on quantum systems

produce a small number of values effectively means that

most of the quantum world remains hidden from exper-

iment. Only theory and computation have a chance to

see deeper.

To execute our plan of deriving the phenomenol-

ogy of QM from the assumptions in Appendix A.1, we

must admit that the measurement process is more com-

plex. It is fair to say that every experiment in QM is a

scattering experiment that involves systems with more
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microscopic parts than there are macroscopic parts in

the Large Hadron Collider detectors ATLAS [6] and

CMS [25], namely a number of atoms and molecules

of the order of Avogadro’s number 1023. While Born’s

rule is very effective and accurate, it does not explain

how quantum dynamics leads to observed outcomes in

macroscopic systems that are themselves supposed to

be described by QM [23]. We need more structure than

the mechanics of kets. To deal with large numbers of

kets, we turn to a statistical description.

2.2 Probabilities and statistics

When von Neumann [61] introduced10 the statistical

operator Eq. (B.8), he intended to generalize the classi-

cal probability distribution on phase space that assigns

a probability to different states. From the analysis in

Theorem A.2, von Neumann saw the possibility to in-

troduce a statistical state for quantum systems that

aligns well with the Born probability rule. It takes the

form

D =

∞∑
N=0

∑
k1,...,kN

pk1,...,kN |Φ, k1, . . . , kN 〉〈Φ, k1, . . . , kN |.

(2.4)

von Neumann intended these operators to give the prob-

ability pk1,...,kN that the system is in the state described

by the ket |Φ, k1, . . . , kN 〉. It is only after the Born rule

is established that these numbers, called q-probabilities

[4], can be identified with probabilities that have the

usual frequency interpretation in probability theory.

The operator provides a way to describe a state that

is not completely known, a mixture or Gemenge [23,

p. 21], by assigning multiple possible kets or wave func-

tions to the system, each weighed by a positive number

that can be interpreted as the probability for the sys-

tem to be in the state represented by the corresponding

ket or wave function. Because states of combined sys-

tems naturally decompose into statistical operators by

Theorem A.2, the state of the system consisting of an

observed quantum system and a measuring apparatus

naturally leads to the consideration of states for the

component systems with such a structure. When the

proper observable operator and associated apparatus is

chosen, the outcome is in agreement with Born’s rule11

[18,19]. Thus, the proposal by von Neumann to take

the statistical operator as the appropriate definition of

statistical state in QM seems like the correct way to

proceed.

10 See Theorem A.2 in Appendix A for the inspiration for
the form of the statistical operator.
11 Given by Eq. (A.14) in Appendix A.

Schrödinger [75,76,63,23] pointed out that the sta-

tistical operator cannot be written in a unique way as a

mixture of multiple pure states, i.e. projectors on one-

dimensional spaces P = |Ψ〉〈Ψ |, if one allows them to

be not orthogonal. As a result a general mixed state can

be created from a set of kets and associated probabil-

ities, but once created it is not possible to reconstruct

these kets and probabilities in a unique way. Therefore

the probabilities associated with a mixed state cannot

be uniquely separated from the probabilities associated

with pure states, which is why the statistical interpre-

tation [7] of QM is used by ABN [3]. For the statistical

operator in QM to share with CM the property of being

a unique construction from states, one would need to

impose the orthogonality restriction to mixtures, which

is not desirable since states in QM that are different do

not have to be orthogonal kets.

Is the von Neumann statistical state the only and

best way to define a statistical state in QM? In statis-

tical CM, the statistical state is defined12 as a proba-

bility measure on the classical phase space. To define

the statistical state for systems in QM, we make the

same construction as in statistical CM, but now on the

quantum phase space H. Then every state is assigned

a unique probability without the need for different kets

to be orthogonal.

2.2.1 System coordinates

A difference between defining systems in CM and QM

pertains to the way coordinates can be chosen to de-

scribe a system, which becomes particularly important

with large and macroscopic systems. Because CM deals

with degrees of freedom that are specified by pairs of

coordinate and momentum and can be composed as

described in Theorem A.1, there is great freedom in

choosing coordinates to describe systems. This freedom

is further clarified by the fact that the dynamical equa-

tions of CM are invariant under canonical transforma-

tion, which can be very general. This generality is often

useful to simplify the problem of describing the dynam-

ics of a system and in finding solutions to the equa-

tions. One consequence is that it is possible to describe

a classical system in layers: One can start by defining

collective coordinates to describe a system at a coarse

level and then add coordinates that provide additional

details at multiple layers, with each layer describing a

finer scale. By choosing the layers to align with the

expected or observed dynamics of the system, the cou-

pling between degrees of freedom in different layers can

be minimized. This often can result in methods to ob-

tain solutions with high efficiency and/or high accuracy.

12 Definition B.1 in Appendix B.
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CM is scale invariant. Its concepts and equations ap-

ply equally well to the solar system, earthquakes, ocean

flows, and man-made mechanical devices. This is not

the case with QM, as pointed out by Dirac [33, p. 4],

where there is the concept of the “absolute small.” At

first sight, the fact that a theory has a notion of abso-

lute scale does not have to be connected to the ability

to choose degrees of freedom; it could still be possible

that the theory can be used with equal ease and validity

at multiple scales. However, that is not the case with

QM.

Because the union and separation of systems in QM

do not form a group of operations as in CM, as shown

by Theorem A.2, there is no freedom to define degrees

of freedom with arbitrary and general coordinates. The

way a system is composed matters. It is not possible to

describe the dynamics of collective degrees of freedom

independently of the degrees of freedom that make up

the collective coordinates, as in CM, except in a small

number of exceptions.13

If the description of a physical system requires quan-

tum accuracy, then the system should be described con-

sistently at that level for the degrees of freedom to in-

teract naturally: The atomic hypothesis needs to be in-

voked and atomic degrees of freedom must be used and

combined to describe the system. For example, in QM

one cannot describe a planet as a system with a single

degree of freedom,—the center of mass coordinate and

momentum,—and a large mass denoting the Newtonian

substance of the planet. If quantum accuracy is required

in the description of the planet’s motion,—which ad-

mittedly is an unlikely requirement,—the planet must

be described in terms of the degrees of freedom of the

constituent atomic nuclei and electrons. Only then are

the degrees of freedom correctly combined. With that

choice of degrees of freedom, the quantum dynamics of

the planet will not exhibit Schrödnger cat states: The

interactions between the very large number of degrees

of freedom prevent that.

In other words, because QM has an absolute scale

and because of limitations on combining and separating

systems,—by tensor product instead of direct sum,—

the quantum description of systems must be built from

the bottom up.

13 One such exception the case of atomic nuclei in the realm
of atomic, molecular, and materials physics: It is not neces-
sary to treat the coordinates of the protons and neutrons,
or quarks and gluons, inside the nucleus explicitly to obtain
highly accurate results in atomic, molecular, and materials
physics. The center of mass coordinate of the protons and
neutrons decouples and can be used by itself to describe the
nucleus in that realm.

2.2.2 Statistical state = probability measure

Another difference is that the phase space in QM is

an infinite-dimensional Hilbert space H, instead of the

finite-dimensional space H = R2N in CM. Hence we

require the mathematical notion of a finite measure on

an infinite dimensional space14 [80,11].

Because there is no equivalent to Lebesgue mea-

sure on infinite-dimensional spaces,15 we cannot define

a probability distribution function (PDF) relative to it,

but we can define a probability measure directly.

Definition 2.1 The statistical state σ of a quantum

system is a probability measure on the phase space H,

the space of kets, or wave functions, of the quantum

system.

Now the concepts from Appendix B, including nor-

malization Eq. (B.2) and dynamical flow Eq. (B.4) can

be carried over immediately to the phase space H in

QM with the ket |Ψ〉 or the wave function Ψ replacing

the classical state (q, p). The SE drives the dynamics of

wave functions Ψt and defines the Schrödinger flow

|Ψ, t〉 = U(0, t, I)|Ψ, 0〉, (2.5)

similar to the Hamilton flow in Eq. (B.3). The flow can

be extended naturally to Borel sets S in H as St =

U(0, t, I)S, where U(r, t, Λ) is the Poincaré group rep-

resentation defined as the straightforward generaliza-

tion of the unitary representation of translation in time.

That flow defines the time evolution of the statistical

state σt

σt(S) = σ(S−t) = σ
(
U(0,−t, I)S

)
. (2.6)

in complete analogy with in Eq. (B.4).

In the theory of Lebesgue measure, sets S and sub-

spaces Rm of dimension m less than the dimension of

the space RN on which the measure is defined, all have

measure zero [67,81]. For example, points have measure

zero in classical phase space. Similarly, individual kets

on QM have measure zero for a statistical state σ. In

other words, eigenstates have probability zero with our

definition of statistical state. This is not a problem, be-

cause any experiment will work at all times with sets

of kets that do have a nonzero probability, smaller for

smaller sets of kets that specify a more precisely pre-

pared state for a quantum system.

This needs to be contrasted with the von Neumann

density operator. Because of its provenance by Theorem

A.2 from the analysis of states for composite systems,

14 In Appendix D we summarize a few of the most relevant
properties pertinent to the formulation of statistical QM.
15 See Theorem D.1 in Appendix D.
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it assigns finite probabilities to the basis kets of the

Schmidt decomposition. It is this property that shows

that the density operator is not a true probability mea-

sure on the space of kets, but on linear subspaces [51,

88].

Furthermore, when we look at the Hilbert space H
of all states, it becomes clear that, with respect to any

choice of basis for each of the single degree-of-freedom

subspaces, the number of entangled states far outnum-

bers the special superpositions that are tensor product

states. In any statistical state σ the set of tensor prod-

uct kets and all their superpositions have dimension less

than the total Hilbert space of all kets and therefore

form a set of measure zero. This means that any quan-

tum system in any statistical state σ has all degrees of

freedom of all subsystems entangled all the time.16

2.2.3 High-precision statistical state

The path to make the connection between the formal-

ism of QM, the kets evolving under the SE, with exper-

imental observations goes through the domain of sta-

tistical states. The first type of statistical state we will

need is one that specifies a single ket with high preci-

sion, i.e. with little variance. Let the ket be |Θ〉. Equiv-

alently, one can think of the wave function associated

with the ket in the spectral representation of any ob-

servable operator, such as field strength ϕr in a point

r = (x, y, z) so that the wave function takes the form

Θ(ϕr).

We define a Gaussian measure γ on H for this sta-

tistical state. The ket |Θ〉 is chosen as the mean. To

specify the covariance operator Γ , we need to charac-

terize the allowed fluctuations of the ket. This is most

conveniently done by specifying a basis of kets (|Ξ,n〉)n
and a variance γn for each one, as the eigenvalue of Γ

associated with the eigenvector |Ξ,n〉

Γ |Ξ,n〉 = γn|Ξ,n〉. (2.7)

To make Γ positive definite, all eigenvalues γn must

be chosen real and positive; to ensure finite trace, we

require

TrΓ =

∞∑
n=0

γn <∞. (2.8)

Observe that the Cameron-Martin space17 of the

measure γ is the set of all kets for which

〈Ψ |Γ−1|Ψ〉 =

∞∑
n=0

|〈Ξ,n|Ψ〉|2

γn
<∞. (2.9)

16 The definition of superposition and entanglement can be
found in Appendix A.3.
17 See Appendix D for the definition.

That means that if the eigenvalues γn go to zero slowly,

while still retaining a finite sum e.g. like n−2, there will

be many more kets |Ψ〉 in the Cameron-Martin space

than when the γn go to zero fast, e.g. like (n!)−1. Since

the Cameron-Martin space is a set of measure zero, any

vector in it counts as being the same as the mean |Θ〉;
the kets that contribute to the measure and to any in-

tegrals taken with it lie outside the Cameron-Martin

space. It follows that a tight covariance operator, i.e.

with γn going to zero rapidly with n, makes for a tight

statistical state with mean |Θ〉 and small variance; a

loose Γ makes for a fuzzy statistical state with large

variance.

High-precision statistical states will be used to de-

scribe quantum systems in kets that are well-known and

experimentally well-characterized.

How are these statistical states realized in experi-

ments? Consider two examples of the photoelectric ef-

fect: an electron extracted from a glowing wire by a

large voltage and an electron excited from a core or-

bital by absorption of an X-ray photon. In both cases

the final energy and velocity of the photo electron can

be similar by proper choice of voltage. In the Newton-

Maxwell ontology, one is inclined to think of the elec-

tron as a point particle and one envisions the final

wave function in the two cases to be very similar and

equal to a plane wave with the appropriate momen-

tum. Close examination of the processes, mindful of

the Heisenberg-Dirac ontology, leads to a distinction

between the two cases. In the case of the high-voltage

extraction, the electron is likely to come from the va-

lence band of the metal wire, which means it is de-

scribed by a wave function extended over several unit

cells of the metal. The process of the photoelectric effect

in this case, as described by the SE, transforms this ex-

tended, traveling wave inside the conducting metal into

a higher-momentum, extended, traveling wave in free

space. In the case of the X-ray photo electron, the ini-

tial wave function is a tightly bound core orbital and the

evolution described by the SE produces a much more

localized wave function traveling in free space.

The question arises as to how similar these two fi-

nal wave functions really are? In perturbation theory

treatments of the process, one uses a plane wave ba-

sis and clearly obtains quite satisfactory results in both

cases. The answer lies in that one does not have access

to or control over individual wave functions, or kets; ex-

perimental control can only be exercised on statistical

states. In carefully controlled experiments like the two

examples of the photoelectric effect, one creates high-

precision statistical states. The variance of the statisti-

cal state is described by the correlation operator Γ . It

introduces a fuzziness around the wave functions cre-
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ated by the two distinct processes that may require ex-

tremely fine and precise experiments to overcome.

2.2.4 Large-system statistical state

Next we consider the construction of a statistical state

for a very large system, such as a macroscopic mea-

surement apparatus. The system does not have to be

homogeneous, but it may consist of parts that are metal

and parts that have very complex chemical composition

such as the detector in the double-slit experiment to be

discussed in Section 3, which consists of a fluorescent

film attached to optical fibers. To describe the statisti-

cal state, we will again build a Gaussian measure, which

means we have to specify the mean ket |Θ〉 and the

covariance operator Γ . We will specify it through its

eigenvectors |Ξ,n〉 and eigenvalues γn as before.

We consider a large system to be one with a number

of degrees of freedom of the order of Avogadro’s num-

ber. There is no way to capture the state, ket, or wave

function of such a system experimentally; at best we

can construct a theoretical and computational charac-

terization with the uncertainties captured in the statis-

tical state. Even the statistical state cannot be pinned

down precisely by any experiment. Fortunately, the na-

ture of measures on infinite dimensional spaces is such

that high precision specification of the measure is not

relevant for physics.

To construct the mean ket |Θ〉 of a statistical state

for a large system, we can start with the ket for a

meaningful building block of the large system, such as,

for example, a ket for a molecule or for a nanostruc-

ture, and with these kets compose a product ket for the

large system. The basis |Ξ,n〉 can be chosen the same
way to specify the type of deviations from the mean we

wish to consider in the statistical state. Because of the

uncertainty around the precise ket for the system, the

eigenvalues γn will be chosen to decay slowly with n,

for example like n−(1+ε) with ε > 0 so that the trace∑
n γn <∞. Any superposition

|Θ〉+

∞∑
n=0

cn|Ξ,n〉 (2.10)

such that
∞∑
n=0

|cn|2

γn
<∞ (2.11)

will be in the Cameron-Martin space of the statistical

state and be indistinguishable, by measure, from |Θ〉.
With such a slow decay for γn that space will include

a lot of superpositions. That means that long-range

(but not infinite range) extended states that have cor-

related and entangled molecules or nanostructures are

described by the statistical state as indistinguishable

from the mean state. As a consequence, the statistical

state of a macroscopic system is an extremely high-

quality generator of random kets for the macroscopic

system. In other words, the macroscopic system is not

in a single ket at all. This, as we will see in Sect. 3, is

precisely where the randomness in QM emerges in our

approach.

2.3 Emergent, deterministic q-classical systems

Statistical states give a probability distribution on all

kets of the quantum system. Macroscopic systems have

a large number of degrees of freedom, in the order of

Avogadro’s number 1023. It is impossible in practice

to measure and characterize the ket or wave function

of such a large system. For example, it may include a

microscopic quantum system and a macroscopic mea-

surement apparatus. We are not interested in the full

details of this statistical state, just in a limited number

of collective, macroscopic variables that allow control

over the system to be measured and a few more that

provide information from the interaction between the

apparatus and the observed system.

2.3.1 Collective variables

We follow the same line of thought as in Appendix B.2

to define collective variables for the statistical quantum

state σ. The considerations on the frequency interpre-

tation for statistical states of classical systems apply

equally to macroscopic quantum systems, so that it is

plausible to take the same view and read Definition 2.1

to mean:

1. In non-equilibrium statistical QM, the mathemati-

cal description of the state of a macroscopic physical

system with N degrees of freedom is the statistical

state of the system, i.e. the probability measure σ

on the system’s Hilbert space H.

2. The macroscopic observables (volume, pressure, tem-

perature) and their dynamical evolution are encoded

in the finite measure σ and its dynamics σt derived

by Eq. (2.6) from the underlying flow

|Ψt〉 = U(0,−t, I)|Ψ0〉 (2.12)

in H, Eq. (2.5).

The question arises as to how one can effectively

specify and characterize the measure σ? Since it is a

measure on H, which contains all N degrees of free-

dom, with N of the order of Avogadro’s number NA =
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6×1023, the full experimental specification of the mea-

sure is out of reach; we will have to rely on theoreti-

cal considerations to find a reasonable characterization.

The number of variables that are accessible to exper-

iment (pressure, volume, temperature, charge) is tiny

compared to the number of degrees of freedom, but

their behavior is crucial and can be verified experimen-

tally. Hence, we seek to specify the small set of macro-

scopic variables in terms of the large number of degrees

of freedom.

2.3.2 Q-classical variables

Taking into account that the Born rule gives the correct

phenomenological description, we are lead to make two

definitions.

Definition 2.2 Let A be an observable operator, self-

adjoint, for a quantum system with Hilbert space H and

let |Ψ〉 be a ket representing the quantum system. The

real numbers

vA(|Ψ〉) = 〈Ψ |A|Ψ〉 (2.13)

and

wA(|Ψ〉) =
(
〈Ψ |A2|Ψ〉 − vA(|Ψ〉)2

) 1
2 (2.14)

are called the q-expectation and the q-variance, re-

spectively, of the observable A in the ket |Ψ〉.

Because we do not view the state or ket to have any

probabilistic meaning or interpretation by assumption

A.1, the two numbers have only meaning as a computa-

tional prescription, as will become clear next. We follow

the nomenclature introduced by ABN [4] to distinguish

the mathematical objects defined here from the very

similar-looking counterparts in probability theory and

statistics.

Definition 2.3 Let A be an observable operator for a

quantum system with Hilbert space H and σ a measure

on H representing a statistical state of the quantum

system. The real numbers

mA(σ) =

∫
H
vA(|Ψ〉)σ(d|Ψ〉)

=

∫
H
〈Ψ |A|Ψ〉σ(d|Ψ〉)

(2.15)

and

∆A(σ) =

(∫
H
w2

A(|Ψ〉)σ(d|Ψ〉)
) 1

2

=

(∫
H

(
〈Ψ |A2|Ψ〉 − 〈Ψ |A|Ψ〉2

)
σ(d|Ψ〉)

) 1
2

(2.16)

are the expectation value or mean and the vari-

ance, respectively, of the observable A in the statistical

state σ.

Here the mean and variance have the familiar prob-

abilistic meaning in mathematics because σ is a proba-

bility measure on H. However, the meaning in physics

is still not clear, because of the appearance of the q-

expectation and q-variance; we have not specified their

operational meaning in any experiment; we only have a

theoretical expression.

As a self-adjoint operator, A has a spectral trans-

form A [66]

A : H→ L2(spec(A),C) (2.17)

that brings A to the form of a multiplication operator

and a spectral representation

A =

∫
spec(A)

aMA(da) (2.18)

with the projection-operator-valued measure on the spec-

trum spec(A) of A

MA(S) : H→ H : Ψ 7→MA(S)Ψ = A −1ιSA Ψ (2.19)

for measurable sets S in the spectrum. Here ιS is the

index function of the set S, equal to 1 for points in

S and 0 otherwise. Then the probability measure for

the values a of the observable A for the system in the

statistical state σ is given by

σA(S) = σ (MA(S)H) . (2.20)

The mean mA(σ) and variance ∆A(σ) in Definition 2.3

are the mean and variance of this probability measure.

The above definitions apply to any observable, but

they are only really useful for a special subset of ob-

servable operators in QM, namely ones that depend

on a very large number of degrees of freedom, such as

collective variables. If an observable A is the sum of

N observables An, then the q-expectation vA(|Ψ〉) is

the average of the q-expectations and the q-variance

is smaller than the q-variances wAn(|Ψ〉) by a factor

1/
√
N [3]. Therefore, while observable operators in QM

are in general not dispersion free [51], observable oper-

ators that are collective variables can have very small

variances if N is sufficiently large. Collective observ-

ables then behave very much like classical variables in

that they take on values without dispersion [51]. This

motivates the following definition.
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Definition 2.4 Let A be an observable operator for a

quantum system with Hilbert space H and σ a measure

on H representing a statistical state of the quantum sys-

tem. When the variance ∆A(σ) is sufficiently small, the

mean mA(σ) is called a classical variable associated

with the quantum system or, shorter, q-classical

variable.

In practice, if the variance is smaller than the ex-

perimental error, it can safely be considered sufficiently

small and the mean of the observable operator is a q-

classical variable.

2.3.3 Q-classical systems

In the description of macroscopic systems, we will typ-

ically identify a set of collective coordinates Q and as-

sociated velocities Q̇ expressed in terms of a very large

number of observable operators associated with the un-

derlying microscopic degrees of freedom.

Definition 2.5 The system of degrees of freedom con-

sisting of coordinates and associated velocities or conju-

gate momenta that all are q-classical variables is called

a classical mechanical system derived from the

quantum system or, shorter, a q-classical system.

The evolution of the statistical state is governed by

Eq. (2.6) and follows the Schrödinger flow of QM. The

mean in the statistical state of all q-classical variables

then evolves as dictated by the Ehrenfest theorem [34].

Theorem 2.1 (Ehrenfest) The q-classical variables

in a q-classical system can be chosen to satisfy Hamil-

ton’s equations

Q̇ =
∂

∂P
H(P,Q)

Ṗ = − ∂

∂Q
H(P,Q).

(2.21)

It follows that the q-classical systems consisting of

the q-classical variables (Q, Q̇) (Lagrange) or (Q,P )

(Hamilton) satisfy classical equations of motion in New-

tonian or Hamiltonian form, respectively. Together they

form a q-classical phase space M derived from the

structure and dynamics of the quantum system that in-

cludes all the primitive microscopic variables. We have

therefore recovered CM as a structure inside

QM. Non-equilibrium statistical CM can be defined18

on top of that phase space M of the q-classical variables

with its dynamics [77,97,12].

Note that the q-classical systems are derived from

the fully quantum description of macroscopic systems,

18 The procedure is summarized in Appendix B.

which is distinct from, but compatible with, the hybrid

quantum-classical systems considered by Elze [38].

We obtained the following construction as the realist

formulation of QM in four layers:

|Φ〉 ∈ H
σ : B(H)→ R : S 7→ σ(S)

(Q,P ) = (mA(σ),mB(σ)) ∈M
σ′ : B(M)→ R : S 7→ σ′(S)

(2.22)

consisting of deterministically evolving kets in H, a quan-

tum statistical state σ that is a probability measure on

H, a set of q-classical variables (Q,P ) defined with that

statistical state σ that form a classical phase space M,

and a classical statistical state σ′ that is a probability

measure on the q-classical phase space M.

3 Measurement

We apply both the empiricist formulation [60] of the

measurement process according to ABN19 and the re-

alist formulation developed in the paper to a concrete

experiment. We have two goals with this presentation

and associated analysis:

The first goal is the same as that of ABN and is to

show that measurement is a complex process. Too of-

ten the measurement problem is presented in an overly

abstract way, with kets or density operators that rep-

resent very large numbers of degrees of freedom being

manipulated through a small sequence of steps, while

the countless complex processes taking place at various

stages in the measurement process are ignored [93]. For-

tunately, the modern discussion includes the process of

decoherence to counter this oversimplification [91].

The second goal is to show that a careful and pre-

cise deduction from the foundation assumption of kets

evolving under the SE, viewed in the Heisenberg-Dirac

ontology,20 does meet up precisely with the inductive

empiricist description of quantum phenomena, as given,

for example, by ABN. In other words, the realist for-

mulation provides an explanation of what happens in-

side the black box that is QM, the outside of which

is carefully described by the empiricist formulation of

QM [60].

To illustrate the role of probability, the place of

classical systems, and the measurement process in QM,

we consider the famous double-slit thought experiment

that was carried out as a real experiment in 1989 by

Tonomura, Endo, Matsuda, Kawasaki, and Exawa [86].

19 The ABN description of the measurement process is sum-
marized in Appendix C.2.
20 The definition is given and discussed in Appendix C.3.
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1. Electron beam A beam of electrons, accelerated in

an electron microscope by an electrostatic potential

of 50 kV, is sent through a biprism, which consists

of two parallel grounded plates with a thin filament

on a positive potential placed between them. 50 kV

electrons move at approximately half the speed of

light. The distance from the source to the detec-

tor is about 1.5 m, which is traversed in a tenth of

a microsecond. The electron arrival rate in the ex-

periment is 1,000 electrons per second on the entire

113 mm2 detector surface. With about one electron

injected into the system every 1,000 microseconds,

it is clear that the electrons do not interact with

each other during their flight through the electron

microscope to the detector.

2. Detector The detector surface, which has a diam-

eter of 12 mm, is a combination of a fluorescent

film and a photon-counting image acquisition sys-

tem. When a 50 kV electron hits the fluorescent

screen, about 500 photons are produced at the lo-

cation of impact. Touching the fluorescent film is

an array of optical fibers to guide the photons to

an amplification and position recording system. The

photons produce secondary electrons that are accel-

erated. An electrostatic lens produces a point image

on the upper layer of a multichannel plate, where the

number of electrons is multiplied and the position

recorded in a computer. The accumulated image is

then shown on the display monitor.

3. Observation The electron de Broglie wave length

is 0.54 nm. The distance between two interference

fringes is d = 70 µm. The interference fringes are

magnified 2,000 times by two projector lenses onto

the detector. The enlarged fringe spacing is then 1.4

mm. The interference pattern can be generated in

approximately 20 minutes. The authors show [86] a

sequence of photographs (reproduced in Ref. [44])

of the buildup of the interference pattern: A few

random light dots on a black background are visi-

ble in the initial photograph, with subsequent pho-

tographs showing increasing numbers of light dots;

five fringes are shown in the final photograph after

about 70,000 electrons have been recorded, about

14,000 electrons per fringe.

The empiricist approach to the measurement pro-

cess [60] must logically start from the data observed

in an experiment, which means the process must in-

clude the recording of the data, often referred to as the

“pointer variable.” In general this is where the wave

function is considered to collapse [91]. The description

of all the processes up to that point are treated as de-

scribed by the SE [54] and are often called “premea-

surement” [64,23]. In the above double-slit experiment,

all processes up to the recording in computer memory

can be considered premeasurement. The description fol-

lowing ABN in Sect. 3.1 describes the full measurement

in this sense; the description using the realist view in

Sect. 3.3 focuses on the interaction between the elec-

tron wave function and the fluorescent film because it

creates the initial irreversible amplification by creating

500 photons at one spot on the film. This is part of

premeasurement and follows van Kampen’s description

[54] of the measurement process. The rest of the process

can be described similarly using the realist formalism,

because there is no wave function collapse, just more

deterministic evolution according to q-classical dynam-

ics as defined in Sect. 2.3.

In Sect. 3.1 we describe the experiment using the

language and formalism of ABN. Next, in Sect. 3.2 we

analyze the role of the position observable for the elec-

tron in this experiment. In Sect. 3.3, we describe the

process using the realist formulation of statistical QM

developed in this paper, Sect. 2. Then a derivation of

Born’s rule follows in Sect. 3.4.

3.1 Empiricist description

We now describe the double-slit experiment by apply-

ing the work by ABN [3,4], summarized in Appendix

C.2, to show how the unique outcomes that are proba-

bilistically recorded follow from the dynamics governed

by the LvNE Eq. (B.10). The Copenhagen postulate

of a second way, projection or collapse, for the ket to

evolve is therefore not necessary [3, pp. 8,140]. The ex-

perimental preparations and observations take place by

controlling macroscopic variables [3, p. 10].

3.1.1 Electron beam

The electron beam is characterized by a statistical state

DS Eq. (B.8) for the electron system S. The mean of

that statistical state is the wave function of the elec-

trons in the beam; the variance is very small and negli-

gible for all practical purposes. By careful control of the

experiment, the number of electrons flowing through

the electron microscope is about 1,000 per second. Thus

the dynamics of the electron can be described by fo-

cusing on the wave function until it hits the detector

screen. As the electron interacts with the detector, only

a description in terms of the statistical operator D of

the electron system S and the measurement apparatus

M will work [3].
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3.1.2 Detector

To describe the detection process, the fluorescent film

on the 12 mm diameter detector M is viewed as an ar-

ray of mini detectors, called “grains” by ABN, M(x, y)

that are assemblies of fluorescent molecules located at

coordinates (x, y, z = 0), assuming the electron beam

flows downward along the z-axis from the source at

z = h = 1.5 m to the detector at z = 0. Each mini de-

tector has a observable W (x, y), indexed by the x, y co-

ordinates of the position in the z = 0 plane of the detec-

tor. The observable indicates whether the mini detector

has fired a bunch of photons. The observable is defined

as the average over the molecules in the mini detector

of the amplitude of the excited state that will emit a

photon when the molecule transitions back down. The

grains M(x, y) correspond to the magnet M in the

Curie-Weiss model studied by ABN and the observ-

able corresponds to the magnetization. Applying their

model the mini detectors are the systems with a coher-

ent dynamics that can absorb the electron energy and

record the absorption event by emitting 500 photons

almost simultaneously in a flash.

Given the very large number of fluorescent molecules

in the screen, the number of mini detectors is also very

large. Assume that the fluorescent molecule in the film

has about 30 atoms and has a diameter of 10 nm. It

therefore has a cross section of 80 nm2. With a 12

mm diameter, the screen has π62 mm2/ 80 nm2 '
1012 fluorescent molecules. Thus there are 2×109 '
1012/500 mini detectors, each with a surface area of

500×80 nm2 ' 0.04µm2.

The number 500 of fluorescent molecules in any mini

detector is itself defined by the dynamics of the com-

bined system and is not an exact number for every de-

tection event. It is determined by the number of pho-

tons that can be created by the energy of a 50 kV

electron. Since each photon is created by the transition

in one fluorescent molecule, one electron impact event

must involve 500 molecules that interact in a quantum

mechanically coherent way. It is in this sense that the

grains are defined dynamically as part of the electron

impact.

Given that a typical optical fiber has a diameter

of 10 µm and a cross section of π52 µm2 ' 80µm2, a

fiber will capture the photons from approximately 80

µm2/0.04µm2 ' 2, 000 mini detectors.

Because each mini detector consists of 500 molecules,

each with about 30 atoms, the detector variable W (x, y)

is determined by about 15,000 atomic observables so

that it has a probability distribution with a width that

is narrower than the atomic observables by a factor of√
15, 000 ' 122, i.e. two orders of magnitude narrower.

This meets the requirements on N to make the mini

detector sufficiently large to be a pointer system as de-

fined by ABN [3, p. 52].

The statistical state DM of the complete detector

screen is a product of the statistical states DM(x,y) of all

mini detectors. While the mini detectors may interact

at the edges, there is no persistent quantum coherence

across large numbers of mini detectors. The statistical

state DM(x,y) is very different from that of the carefully

prepared beam. It is not narrowly focused on a set of

physically similar wave functions, but instead covers a

broad class of wave functions and all their superposi-

tions. The statistical state DM of the whole detector is

then constructed as a product of the statistical states of

the mini detectors, possibly with the addition of some

corrections to allow for entanglement between neigh-

boring mini detectors.

To describe the transition of the mini detector from

initial state to final state where 500 photons have been

omitted, we use a basis for the grains constructed as a

tensor product from the basis for each molecule, with

minor modifications that can be computed by pertur-

bation theory to take into account the effect of the

interaction, including chemical bonding, between the

fluorescent molecules. That basis has a state with all

molecules in their lowest electronic state and numer-

ous states with various levels of electronic excitations.

We are interested in the first electronic excited state

in each molecule, as the transition from that state to

the molecular ground state will generate one photon.

The interaction with the electron generates an excited

state for the grain with about 500 molecules in their

excited state. This excited state will then decay with

the emission of 500 photons.

3.1.3 Observation

With the above identification of the physical subsys-

tems in the double-slit experiment, we now follow the

description of the measurement process given by ABN.

The preparation consists of the electron interact-

ing with all grains in randomly distributed statistical

operators DM(x,y) as described by the LvNE. The im-

pact of the electron stimulates the molecules in the en-

semble of grains to excited states as a quantum me-

chanical process involving the electron and about 500

molecules. This puts the mini detectors in a metastable

state.

The next part of the evolution is the initial trun-

cation where one of the mini detectors in the ensem-

ble proceeds to emit 500 photons. Here the off-diagonal

terms in the grain basis of the statistical operators of

the grains evolve to zero and DM(x,y) becomes diago-
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nal. The intensity of the electron beam is such that this

happens only for one out of the ensemble of 2×109 mini

detectors at a time (with very high probability).

Irreversible truncation of the off-diagonal ele-

ments in the statistical operators in the grain basis de-

scribed above results from further interaction among

the molecules in the grain and of the photons with the

fiber optic that ensure that the process is irreversible

and that there is no recurrence of the off-diagonal blocks.

The photons travel through the optical wires to the

recording system which generate secondary electrons

that get amplified and then recorded as described above.

Registration takes place where correlation is built up

between the electron system S, the ensemble of mini

detectors M(x, y), and the recorder system. Because

of the experimental setup, where only one electron is

present at any one time, the ensemble will be such that

only one mini detector emits 500 photons at any one

time and only its secondary electrons are amplified and

recorded in the computer memory.

Further interactions ensure sub-ensemble relax-

ation so that each run can be associated with a unique

outcome of the position of the flash being registered.

Finally, the reduction takes place with the 500

molecules returning to the ground state leaving 500

photons to be caught in the optical fibers, which ini-

tiates secondary electrons to be emitted and amplified,

producing a current that is recorded in a computer.

Now the measurement of a single electron passing

through the microscope is complete, and one dot has

been added to the display.

3.2 Position observable: particles or fields?

In the empiricist view [60], all observables are on equal

footing: They produce a spectrum and a probability dis-

tribution for finding values in that spectrum. If the elec-

trons are described by the non-relativistic SE with the

position operator r = (x,y, z) defining the Schrödinger

picture, the evolution of the ket and its wave function in

that representation can be computed. Upon detection,

a single isolated flash is observed with the probability

given by Born’s rule as a consequence of the LvNE evo-

lution of the interacting systems that were described in

Sect. 3.1.

Now we want to describe the same process in a re-

alist way, starting from the deterministic evolution of

kets as discussed in Sect. 2.1 for the underlying quan-

tum systems, which includes the electrons in the beam

of the electron microscope (as well as all other electrons

in the components of the measurement apparatus).

Then the question arises: What happens to that

wave function during the interaction with the macro-

scopic instrument as a quantum system? In particular,

what happens to the wave function during and after

the interaction with the field of mini detectors M(x, y)

when one of them emits 500 photons and all the others

do not?

If we hold the realist notion that the ket is the elec-

tron, then the ket must now be localized around the

position (x1, y1) of that one mini detector M(x1, y1)

that sent off 500 photons. In other words, the wave

function has collapsed. The transformation of the ket

from just before that interaction to just after that in-

teraction cannot be described by the SE. What are

the options to proceed in the development of a theory

for quantum phenomena?

1. The traditional conclusion, the empiricist view, is

to declare this detail as being inside the black box;

we do not know and we do not have to know to be

able to do physics.

2. The realist view taken in this paper follows the in-

tuition of the young Heisenberg [50,42] to let the

formalism be the guide, and rejects the position

operator as an admissible observable even in

non-relativistic QM.

The need for considering position an observable has

a natural alternative: Consider the position as the co-

ordinate in space of the event under consideration, in-

stead of taking the position as an observable of the sys-

tem involved in the event. In the case of the double-slit

experiment, the electron creates an event and the de-

tector records the event with the wiring of the detec-

tor allowing tagging the event with the coordinates in

space of the event. Similarly, there has been an inter-

est in considering time as an observable [22, §III.4.2],

instead of as a coordinate of an event. In CM the two

views are trivially equivalent, since one only measures

a few numbers; in QM, however, there is a big differ-

ence as a coordinate is a number and an observable is

a Hermitian operator.

Within the context of non-relativistic QM, we can

accept instantaneous changes across infinite distances

in space. In CM this never poses a conceptual problem

and the only change that ever needs to be made to a

classical non-relativistic theory to make it relativistic

and Lorentz covariant is to make the speed of propa-

gation finite. Careful analysis of the problem of nonlo-

cality and collapse of the wave function by d’Espagnat

[27, §8.3], later refined and confirmed by Aharonov and

Albert [1,2], shows that the concept of a wave function

and the process of its collapse cannot be described in

a consistent Lorentz covariant way. This is further sub-

stantiated by the fact that no good relativistic position

operator seems to exist [85].
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If we assume that all physics is described in terms of

local quantum fields, with all kets |Ψ, x, y, z, t〉 and ob-

servable operators ϕx,y,z labeled by space coordinates

(x, y, z) evolving in time t, then the Heisenberg-Dirac21

ontology offers a clean picture of kets evolving in Hilbert

space under the SE at all times for all processes, fully

accessible by theory and computation, possibly some-

what hidden from experiment.

There is an equivalent formulation of non-relativistic

many-body QM that takes the form of a field theory.

Consider the SE for N particles with mass m moving

in an external potential U(r) and interacting through

a potential V (|r1 − r2|) [83, p. 11]

i~
∂Ψ

∂t
=

N∑
j=1

(
− ~2

2m
∇2
j + U(ri)

)
Ψ

+

N∑
j=1

j−1∑
k=1

V (|rj − rk|)Ψ.

(3.1)

One introduces the field operator a(r) and its Hermi-

tian conjugate a†(r) satisfying the field commutation

relations

[a(r),a(r′)] = 0

[a†(r),a†(r′)] = 0

[a(r),a†(r′)] = δ3(r− r′).

(3.2)

Define the Hamiltonian operator

H =

∫
a†(r)

(
− ~2

2m
∇2 + U(r)

)
a(r)d3r+

+
1

2

∫ ∫
V (|r− r′|)a†(r)a†(r′)a(r′)a(r)d3rd3r′.

(3.3)

Then the time-dependent ket

|Ψ, t〉 =

∫
Ψ(r1, . . . , rN , t)

a†(r1) . . .a†(rN ) |0〉d3r1 . . . d
3rN ,

(3.4)

where Ψ(r1, . . . , rN , t) is the many particle wave func-

tion in the Schrödinger representation and |0〉 is the

zero-particle vacuum, can be shown to satisfy the ab-

stract SE Eq. (A.11) if Ψ satisfies Eq. (3.1). This equiv-

alent representation is known as the “second quantiza-

tion formulation” [31, §5.4] [45, p. 46] [27, p. 28] and is

considered a very efficient framework for computations

in many-body QM [69, §6.3].

In this representation of non-relativistic QM, there

is no position observable with a Hermitian operator,

21 Definition in Appendix C.3.

only a field of operators labeled by position as a pa-

rameter that gives the coordinates in space where the

wave function of the field is considered. Now space and

time are treated the same way. Even though the SE

is still non-relativistic, the formalism is ready for the

transition to a relativistic treatment.

It follows that in the realist approach presented here,

all systems must be described as quantum fields, the

interactions between mini detectors must be described

this way as well and there is no concern about describ-

ing large arrays of mini detectors. In particular, the

no-interaction theorem of Currie [26,9] for systems of

particles described can be viewed as further motivation

to avoid the position of particles as an observable.

Any questions of what happens when the ket of a

system evolves to cover a macroscopic region and then,

as the result of interactions with a macroscopic array

of mini detectors, produces a localized emission of 500

photons, can properly be formulated as a question re-

garding the ket |Ψ, r, t〉 of the quantum field with the

associated wave function Ψ(r, t). The non-relativistic

SE applied to the quantum field still predicts instanta-

neous changes across large macroscopic regions, because

it is a non-relativistic equation. The correct answer to

such questions on locality and propagation can only

be obtained by considering and solving the relativistic

equation.

After this analysis, we can return to the question

of what happens to the ket and wave function of the

electron after the interaction with all mini detectors.

The ket of the electron quantum field evolves through

the double-slit setup and interacts with all detectors.

The quantum field ket has a wave function representa-
tion on the field of operators ϕx,y,z and the local field

operators interact with the mini detectors. One of the

mini detectors interacts in such a way that 500 photons

are emitted and the quantum field continues to evolve

locally around that mini detector to reflect the result of

the interaction. This includes the loss of energy trans-

ferred to the photons. In general, the wave functions

manipulated in the second quantization formalism are

chosen to be eigenstates of the number operator. And

this brings us right back to the concern about collapse

of the wave function, because now there is a constraint

that the total number of electrons is one across a macro-

scopic region! However, the answer should be clear: In-

teracting quantum fields may very well never be in an

eigenstate of the free-field number operator, hence there

is no fundamental constraint across a macroscopic re-

gion. The fact that only one mini-detector fires at a

time is controlled by the condition that the intensity

of the generated electron quantum field is sufficiently

low. There is a small probability that two mini detec-
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tors fire 500 photons at exactly the same time, since

the interactions at each mini detector are independent.

We take inspiration from axiomatic [95,84,13] and

algebraic [5,45] quantum field theory to modify the for-

mulation of deterministic QM in Sect. 2.1 to include

the restriction that position and time are excluded

as observables, even in non-relativistic QM. In other

words, all physical systems must be described in terms

of local observables of quantum fields, preferably rela-

tivistic quantum fields.

In this framework, all particles are to be consid-

ered as excitations (quanta) in suitable quantum fields

so that space and time are handled consistently and

so that the field dynamics is able to correctly describe

the propagation of any and all effects, interactions, and

correlations in spacetime.

We do not address the mathematical issues associ-

ated with the explicit construction of the Hilbert space

for quantum fields or the solution of the SE for their

evolution. We take the success of relativistic quantum

field theory in computing any and all desired observ-

ables [79] as an indication that accepting the postulate

is workable.

3.3 Realist explanation

With this clarification, we can now describe the double-

slit experiment from the realist perspective using the

formalism developed in this paper using the statistical

state defined in Sect. 2.2 and the notion of q-classical

systems introduced in Sect. 2.3. The goal is to show that

this view is consistent with experimental observations.

As the empiricist description in Sect. 3.1 digs down

from experiment to foundations, the realist description

climbs up from foundations toward experiment. We will

see that the two approaches meet in the middle and line

up perfectly.

As noted, the statistical states σ are manipulated

by controlling a small number of macroscopic collective

coordinates.

3.3.1 Electron beam

We look at the electrons as excitations in the electron

quantum field, so that a statistical state does not nec-

essarily have a sharp number of electron excitations in

the field. By careful control of the experiment, the num-

ber of quanta flowing through the electron microscope

is about 1,000 per second. But the quantum field ket is

not an eigenvector of the number operator with eigen-

value one.

The electron beam in the double-slit experiment is

characterized by a very narrow statistical state σS of

the electron system S, such as the high-precision state

described in Section 2.2.3. The mean of that statisti-

cal state is the wave function of the electron that is

the focus of the traditional quantum description of the

experiment. Let that wave function Φ(x, y, z) describe

the electron, so that the non-relativistic quantum field

is given by Eq. (3.4)

|Φ〉 =

∫
H
|Ψ〉σ(d|Ψ〉) (3.5)

It is well known that this wave function covers a macro-

scopic region of space after passing through the double

slit [40] and that it shows the diffraction pattern in the

x−y plane. A computation of the q-variance Eq. (2.14)

of the observables x and y in this ket show it not to be

small. Because the statistical state σ is a high-precision

statistical state (§2.2.3), the mean and variance of these

variables in that statistical state σ are the same as the

q-expectation and q-variance, respectively, of its mean

ket |Ψ〉. Hence, the variances Eq. (2.16) are large and

the means mx(σ) and my(σ) Eq. (2.15) for the observ-

ables are not q-classical variables.

3.3.2 Detector

The analysis of the detector follows closely the discus-

sion given in Section 3.1.2, with the main difference

that the statistical state is now described as a measure

σM on the quantum mechanical phase space H. The

measure for the detector is constructed, as described

in Section 2.2.4, by assembling the measures σM(x,y)

of the mini detectors. As we saw in Section 3.1.2, a

mini detector is a physical system with about 15,000

microscopic degrees of freedom and the detector con-

tains 2×109 mini detectors. It is impossible, in practice,

to characterize the ket of such a system or even spec-

ify a high-precision statistical state for it. Rather it is

described by a large-system statistical state (§2.2.4),

which is a probability measure with a large variance.

The mean ket of σM will have a probability similar to

the kets of many other kets with significant variation

in the kets across all mini detectors; including kets for

mini detectors in which various fluorescent molecules

are in excited states. Kets that are superpositions and

entanglements involving several molecules, and even su-

perpositions and entanglements involving all molecules

in the mini detector, also carry significant probability

in the individual statistical states σM(x,y) and the total

state σM , respectively.

The interaction with the 50 keV electron beam to

produce 500 photons is what determines the size of each

mini detector. The mini detectors consist of a number of

fluorescent molecules that are sufficiently close together
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to make the quantum dynamics under the electron im-

pact coherent; no smaller part can be considered to have

dynamics that can be treated to good approximation in

isolation from the surroundings. The collection of mini

detectors forms a grid G = {(xi, yi)|i = 1, . . . , I} with

I ' 2 × 109 from the estimate in Section 3.1.2. The

statistical state σM of the whole detector is then con-

structed as a product

σM =
⊗

(x,y)∈G

σM(x,y) (3.6)

of the statistical states of the mini detectors.

For the physical characterization of the mini de-

tectors, we refer the reader back to Section 3.1.2. We

denote by Θ(q1, . . . , qN ) the second-quantization wave

function of all the nuclei and electrons in the molecules

in one mini detector. Then we compute the mean Eq.

(2.15) of the detector variable W (x, y)

mW (x,y)(σ) =

∫
H
vW (x,y)(|Θ〉)σ(d|Θ〉)

=

∫
H
〈Θ|W (x, y)|Θ〉σ(d|Θ〉)

(3.7)

and the variance Eq. (2.16)

∆W (x,y)(σ) =

(∫
H
w2

W (x,y)(|Θ〉)σ(d|Θ〉)
) 1

2

=

(∫
H

(
〈Θ|W (x, y)2|Θ〉

− 〈Θ|W (x, y)|Θ〉2
)
σ(d|Θ〉)

) 1
2

(3.8)

with H = HM(x,y) the Hilbert space of detectorM(x, y).

We conclude, as before, that the mini detector ob-

servable W (x, y) is determined by about 15,000 atomic

observables, so that it has a variance that is narrower

than the atomic observables by two orders of magni-

tude. It follows that the variance ∆W (x,y)(σ
M(x,y)) is

sufficiently small. By Definition 2.4, this implies that

the meanmW (x,y)(σ
M(x,y)) is a q-classical variableQx,y.

The q-classical coordinate Qx,y measures the occu-

pation of the excited states in the mini detectorM(x, y),

which will result in emissions of photons. We associate

a rate of change Px,y = Q̇x,y as q-classical conjugate co-

ordinate to Qx,y. The q-classical variables (Qx,y, Px,y)

can therefore be used to define a classical phase space

M(x, y) for each mini detector M(x, y) in the statis-

tical state σM(x,y). The dynamics in that phase space

follows from the SE by Ehrenfest’s Theorem 2.1. We de-

note the collection of all mini detector q-classical vari-

ables by (Q,P ) = ((Qx,y, Px,y)(x,y)∈G and the resulting

q-classical phase space by M.

3.3.3 Observation

The statistical state of the system of the electron beam

being measured by the detector is given at the initial

time t = 0 by the measure σSM0 = σS ⊗ σM on the

Hilbert space H = HS⊗HM and its evolution Eq. (2.6)

is given by the Schrödinger flow Eq. (2.5) to yield σSMt .

The evolution immediately destroys the product form

of the measure and gives probability to numerous kets

that are superpositions and entanglements of kets of

the beam system and the detector system.

The beam of electrons is a microscopic quantum sys-

tem that interacts, because of the magnification in the

electron microscope, with all the mini detectors in the

detector. Because the system is described as a system of

interacting quantum fields, the SE describes the evolu-

tion of the kets of the interacting system by the motion

in Hilbert space H driven by interactions local in space

and in time. Each initial ket in the statistical state of

the beam couples with all mini detectors, and it evolves

as part of the Schrödinger flow indefinitely.

Because the initial statistical state σS⊗σM(x,y) has

probability on a very large number of kets, the relevant

part (i.e. with nonzero weight) of the Schrödinger flow

has a wide range of outcomes. Some kets show the elec-

tron excitation just shoot through the fluorescent film.

Others bring a few molecules to the excited state that

then decay, each sending out a few photons, but too

few to be recorded. Still others have an evolution where

many molecules get excited in a coherent way so that a

large number of photons is emitted taking the majority

of the 50 keV energy carried by the electron excitation.

For some mini detectors, there is a sufficiently large

fraction of kets of this latter type, so that the average

over the statistical state σM(x,y) as a q-classical vari-

able shows emission of many photons, in numbers large

enough for amplification, thus creating a recorded event

as indicated by the evolution of the q-classical coor-

dinates (Qx,y, Px,y). By definition q-classical variables

have low variance, i.e. they are dispersionless and hence

like the variables in classical physics [51].

In the realist description, in contrast with the em-

piricist description following ABN in Sect. 3.1, there is

no need to follow the amplification of a detection sig-

nal all the way to include the photons generating an

electrical current which then results in the event being

written in the computer memory. The emission of 500

photons by the randomly selected mini detector is suf-

ficient to establish the measurement as an event; the

rest is just q-classical dynamics.

It may be useful to recollect, at this juncture, where

the probabilistic nature of QM enters in the realist ex-

planation. The kets of the electron coming in and those
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of all the molecules in every mini detector all evolve

deterministically (§2.1) governed by the SE throughout

the entire process, from before the measurement event

until after it. The mini detectors are in kets that are

randomly distributed according to the probability mea-

sure σM(x,y) on the Hilbert space HM(x,y) so that some

of them are in the correct ket to coherently interact with

the incoming ket of the electron, which is narrowly dis-

tributed by probability measure σS , and produce 500

photons, instead of none or an undetectable number.

That is the randomness in all quantum processes. Then

the q-classical variables, driven by the underlying SE

and determined by the statistical state, present the clas-

sical world, which experiments record.

In the realist narrative, there is no need to distin-

guish the premeasurement [64] stage, as there never is a

collapse of the wave function. The variables that are ob-

served and recorded in experiments are associated with

the statistical state σ as q-classical variables, they are

not associated with the underlying ket in the Hilbert

space H; the ket never collapses, it changes, evolves,

and keeps going.

3.4 Born’s rule

From the analysis of the double-slit experiment using

both the empiricist and the realist views, we obtain the

following corollary of Ehrenfest’s Theorem 2.1.

Corollary 1 (Measurement) The Schrödinger flow

of an observed quantum system and a quantum appa-

ratus results in the evolution of a detector in a mea-

surement process being described by the evolution of the

q-classical system derived from the statistical state of

the quantum system.

Proof The detector behaves like a statistical ensemble

of mini detectors. The initial state is given by the elec-

tron beam and the random initial statistical state of

each mini detector.

Each mini detector, and hence the whole detector,

has created a definite outcome for each detection event

in a q-classical system, defined by the statistical state

of the macroscopic quantum system that is the mea-

surement apparatus.

The quantum statistical state σSMt defines a proba-

bility density ρt(Q,P ), and hence a probability measure

σ′t, on the q-classical phase space M with the q-classical

variables (Q,P ). The evolution σ′t of this measure fully

characterizes the dynamics of the detector as the q-

classical statistical state of a q-classical system with

coordinates (Q,P ) defined by the quantum statistical

state σSMt .

The q-classical state (Q,P ) of the q-classical appa-

ratus associated with the statistical state σSMt of the

beam-apparatus as a quantum system is the recording

of the observed event.

After the measurement process, the statistical state

of both the microscopic quantum system being mea-

sured (the electron) and the macroscopic system that

is the apparatus (the molecules in the mini detectors,

the photons, and recording devices) continue to evolve

as dictated by the Schrödinger flow. ut

The mini detectors are the natural smallest units

in the macroscopic detector system. Their dynamics is

coherent in that superpositions and phases play a role

in the evolution of the electron and the molecules in the

mini detector to allow extraction of the energy from the

electron by a sufficient number of fluorescent molecules

so that each one can send out a photon.

Alternatively, we can think of mini detectors as the

largest units into which the macroscopic detector can be

divided so that it can still be described as a collection

of parts each evolving mostly independently so that the

q-classical variables (Qx,y, Px,y) for different (x, y) are

statistically independent variables.

In the discussion so far we have formulated all state-

ments in terms of kets which are elements, vectors, in

Hilbert space. The Hilbert space can be given a real-

ization once a complete set of commuting observables

is chosen. Then the kets are represented by wave func-

tions: complex-valued functions on the combined spec-

trum of the set of chosen observables. For a single-

degree-of-freedom system with observable q, wave func-

tions are complex functions Ψ(q) = 〈q|Ψ〉 of q.

We have further formulated all systems as fields so

that all observables are indexed or labeled by spatial

position, for example for a scalar field ϕr = ϕx,y,z. The

same holds for the kets: |Ψ, r〉.
We are now in a position to derive Born’s proba-

bility rule. Following Feynman and Hibbs [40, p. 96]

that every measurement is realized as a set of observa-

tions labeled by space and time, we formulate Born’s

rule using position and time. All observables in quan-

tum mechanics, even internal ones like spin and field

strengths, are observed in practice by using the SE to

connect the possible observable values to specific events

at definite locations and times.

In the double-slit experiment we have established

how events that are localized at a macroscopic scale are

produced by the dynamics in QM. From the observa-

tions, we can reconstruct a phenomenological represen-

tation that includes Born’s probability interpretation of

the wave function as follows.
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Theorem 3.1 (Born’s rule) Given a setup consisting

of a macroscopic measurement apparatus and a micro-

scopic observed system in the statistical state σt with

mean ket |Ψ, t〉 such that

1. there is a collection of mini detectors located on a

grid of positions, and

2. the mean ket |Ψ, t〉 has evolved to cover a macro-

scopic area containing mini detectors,

then a phenomenological wave function Ψphen(x, y, z, t)

can be constructed from the mean ket |Ψ, t〉 such that

the probability density for the apparatus to register a

detection of the microscopic system in position (x, y, z)

at time t is given by

p(x, y, z, t) = |Ψphen(x, y, z, t)|2, (3.9)

the modulus squared of the phenomenological wave func-

tion.

Proof Consider the position operator as the multiplica-

tive operator (x,y, z) acting in the phenomenological

Hilbert space Hphen = L2(R3, λ,C) of complex-valued,

square-integrable functions with λ Lebesgue measure

on R3.

For the sake of keeping the notation from becoming

a distraction, we consider the electrons in our double-

slit experiment as spinless, so that the electron quan-

tum field is a scalar field. We now associate with the

ket of the electron quantum field in and near the de-

tector at z = 0 the phenomenological non-relativistic

wave function Ψphen(x, y, z) that satisfies the following

condition

|Ψphen(x, y, z, t)|2 =

∫
R

∣∣〈ϕx,y,z|Ψ, t〉∣∣2dϕx,y,z (3.10)

Here |Ψ, t〉 is the mean ket for the electron quantum

field, ϕx,y,z is the spectral variable for the field operator

ϕx,y,z, and Ψphen is the phenomenological wave function

that is an element of Hphen.

The solution of this problem does not uniquely fix

the phase of the phenomenological wave function, but

that is not a problem because the granularity of the

mini detectors is defined precisely by the stipulation

that different mini detectors evolve (mostly) indepen-

dently and no phase coherence between them exists.

Using the formalism of second quantization, Section

3.2, in the non-relativistic approximation of a low in-

tensity beam with only a single electron in flight at all

times, the phenomenological wave function is the wave

function in the single-quantum sector of Fock space of

the electron field. The claim follows. ut

It follows from the proof that within the realist for-

malism presented here the operational meaning of the

Born rule is only valid for kets |Ψ, t〉 that have evolved

to cover regions of macroscopic extent in space. It is

not valid at or below the nanoscale, since there are no

detectors that can operate at that scale. For example,

the Born rule does not hold inside an atom.

4 Summary and outlook

In this paper, a realist formulation of QM is presented

to approach the measurement problem. The foundation

principles are that kets are the basic building blocks of

QM and that their evolution is governed at all time and

forever by the SE (§2.1). The probabilities, inextricably

connected with quantum phenomena, are introduced by

placing a probability measure on the Hilbert space of

kets (§2.2). The approach goes by way of defining an

explicit construction of q-classical systems derived from

quantum systems (§2.3), which are shown to satisfy the

laws of CM and therefore can be identified as mapping

all of CM into QM, formally showing that CM is a part

of QM.

If we accept the plausible conclusion that the de-

scription of the ideal measurement process developed

by ABN [3,4] can be applied to all measurement pro-

cessed, then the realist explanation presented in this

paper obtains the same results, just in a different way.

The contribution of the paper is to show that a real-

ist constructive formulation of QM can be given that

starts from the Schrödinger equation, and the frame-

work in which it is formulated, and derives the complete

quantum phenomenology. It provides the complement

to the empiricist activity of induction from experiment

to principles by providing a complete deduction from

the dynamical law of QM given in 1926.

The realist narrative turns the traditional view of

QM on its head: Instead of QM being inherently proba-

bilistic, it is the classical systems derived from quantum

systems that are intrinsically statistical. To be more

precise, whereas the empiricist description holds QM as

inherently probabilistic, the realist explanation makes

kets deterministically evolving components; the collec-

tive variables that constitute q-classical systems, while

governed by deterministic classical laws, are all statis-

tical variables.
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A Brief formulation of quantum mechanics

For ease of reference and consistency of conventions, nomen-
clature, and notation, we give a brief overview of the formal-
ism of QM.

In CM, a degree of freedom is described by a coordinate q
and its velocity q̇ (Lagrangian formalism) or its conjugate mo-
mentum p (Hamiltonian formalism). With the set of degrees
of freedom for a system specified, one selects the range of val-
ues, called the spectrum, of one coordinate in each pair, typ-
ically q, and assembles them into the configuration space.
For example, a system consisting of N degrees of freedom,
with each coordinate having the real numbers as spectrum,
has the configuration space

F = RN . (A.1)

The phase space in QM is then defined as the Hilbert
space of complex-valued functions on the configuration space

H = L2(F, λ,C) = ⊗NL2(R, λ,C). (A.2)

Here λ denotes the Lebesgue measure on F and R, respec-
tively. The second form of the phase space in Eq. (A.2) shows
its structure as a composition, tensor product, of the N de-
grees of freedom [61], similar to the decomposition of the
phase space in CM as

H = ⊕NR2, (A.3)

where R2 is a two-dimensional phase space of a single degree
of freedom with the symplectic form

J =

(
0 1
−1 0

)
. (A.4)

This form of phase space is called the Schrödinger rep-
resentation. The functions on configuration space that are
the elements of phase space are called wave functions. The
state of a system in QM is completely determined by a wave
function, or an element of the phase space H in any other
representation. The abstract form of the state, introduced by
Dirac [33], is the ket |Ψ〉. The two are related by

Ψ(q1, . . . , qN ) = 〈q1, . . . , qN |Ψ〉. (A.5)

The multiplication operator q

q : H→ H : Ψ 7→ Φ = qΨ, (A.6)

where

Φ = qΨ : F→ C : q 7→ Φ(q) = qΨ(q), (A.7)

is the observable associated with the coordinate q in the
Schrödinger representation, which is the spectral representa-
tion of the observable as a Hermitian (technically self-adjoint)
operator.

In the same representation the canonically conjugate co-
ordinate is represented by the Hermitian operator that is the
derivative operator p

p : H→ H : Ψ 7→ Φ = pΨ, (A.8)

where

Φ = pΨ : F→ C : q 7→ Φ(q) = −i~dΨ(q)

dq
. (A.9)

The fact that the two coordinates are canonically conjugate
is expressed by the commutation relation between the observ-
ables as operators

[q,p] = i~I (A.10)

with I the identity operator on H. A theorem by von Neu-
mann establishes that the representation of conjugate coordi-
nate by multiplication and derivative is a unique representa-
tion of a pair of operators satisfying the above commutation
relation [61]. It is possible to represent the state of the system
as a wave function on the spectrum of p, which is called the
momentum representation. In that representation the coordi-
nate q is then represented as the derivative operator.

The two observables q and q̇, or p, that make up a de-
gree of freedom are inextricably intertwined in QM. This is
the most significant difference with CM, where both coor-
dinate and canonical momentum are separate variables that
each take on a single numeric real value for any state of a
classical system at all times during any dynamical process.
The degree of freedom as part of the description of the state
of any quantum system is represented by the wave function
on the spectrum of one of the two observables as Hermitian
operators. If the wave function is given as a function on the
spectrum of the coordinate q, then all information about the
wave function as a function on the spectrum of the conjugate
momentum p is already available and can be obtained by the
spectral transform of the operator p, which is the Fourier
transform.

There is no way to split the information in the wave func-
tion into a part that has only the information about the co-
ordinate q and another part that has only the information
about the conjugate momentum p.

It is useful to look at the Hilbert space of QM as a classical
phase space with the real and imaginary parts of the wave
function as conjugate variables and the complex structure of
the Hilbert space as the symplectic structure [49]. However,
there is no simple relation between the real or imaginary part
by itself of the wave function in the position representation
and any observable of a particle that could give it physical
meaning.

The Wigner distribution function Wψ(q, p) computed
from a wave function ψ [8, p. 29] provides a way to visual-
ize the position and momentum content of a wave function
in one construct. The very fact that the Wigner distribu-
tion provides two views of the same wave function, smoothly
connecting the wave function for position with its Fourier
transform for momentum, illustrates the point that the po-
sition and momentum content are inextricably connected in
the ket.

A.1 Assumptions

We formulate the basic assumptions of QM:

Assumption A.1 QM is a mechanics of kets, or wave func-

tions, that represent physical systems in terms of their degrees
of freedom. The kets are the basic elements of the mathematical

formalism of QM.

The ket can be interpreted as the state of the physical
system, but this requires an ontology and an interpretation
to provide context, as is discussed in Appendix C.
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Assumption A.2 In QM, the evolution in time of the ket is
given by the solution of the first-order differential equation for

kets |Ψ, t〉 or wave functions Ψ(q1, . . . , qN , t) of the system

i~ ∂
∂t
Ψ(q1, . . . , qN , t) = HΨ(q1, . . . , qN , t), (A.11)

called the Schrödinger equation (SE). All observable phenomena
in physics can be derived from the evolution of kets of physical

systems according to the SE.

The construction of the Hamiltonian operator H is an im-
portant step in the formulation of the quantum description of
any system. The classical Hamiltonian function H(q, p) often
serves as a good guide.

Because the SE is a linear equation, its solution is ex-
plicitly known in general and it is given in terms of the one-
parameter family of unitary operators

U(t) = exp

(
−
it

~
H

)
=

∫ ∞
E0

exp

(
−
it

~
E

)
M(dE), (A.12)

where M is a projection-operator-valued measure on the spec-
trum [E0,∞[ of H [66]. This family of operators forms an
Abelian group: U(t1 + t2) = U(t1)U(t2). The operators are
defined with the spectral representation of the Hamiltonian
operator H, which is the unitarily equivalent form of the op-
erator where it acts as a multiplicative operator [61,66].

The relativistic description of a quantum system requires
the extension of the one-parameter group of time translations
Eq. (A.12) to a unitary representation U(r, t, Λ) in H of the
10-dimensional Poincaré Lie group with (r, t) a translation
in spacetime and Λ an element of the 6-dimensional Lorentz
Lie subgroup of rotations and Lorentz boosts [84,92,45,83].
The transformation of an operator A under the full Poincaré
group

Ar,t = U(r, t, I)†AU(r, t, I) (A.13)

is a natural relativistic generalization of the Heisenberg rep-
resentation [33, p. 112].

An important phenomenological element of QM is Born’s

rule [18,19] which provides a connection between the formal
description of a quantum system given by the ket and num-
bers obtained in experiments on the quantum system suppos-
edly described by that ket. The rule is as follows:

For a quantum system in a pure state described by a
ket |Φ〉 the measurement of an observable represented
by a self-adjoint operator A results in values a being
obtained with a probability p(a) that is given by the
modulus squared

p(a) = |Φ(a)|2 (A.14)

of the wave function Φ(a) representing the ket |Φ〉 on
the spectrum of A.

The Born rule is variably used as a definition of the inter-
pretation or the meaning of the wave function, and of the ket,
or as an assumption in the formulation of QM to describe an
alternative way the ket can change under the effect of inter-
acting with other systems in addition to evolution under the
SE as in Assumption A.2. Everybody uses the Born rule, but
there is no universal consensus on what its true role is [50,23,
60,91]. In the work of ABN [3,4] and in this paper, the Born
rule is derived from from the LvNE Eq. (B.10) and the SE
Eq. (A.11), respectively.

A.2 Composite systems

There are important differences between CM and QM in the
way the theories handle composite systems. We exhibit the
procedure in two theorems; the statement in CM is usually
not discussed explicitly because it is considered self-evident.

Theorem A.1 Consider two systems A and B in CM with states

(qA, pA) = (qA1 , . . . , q
A
M , p

A
1 , . . . , p

A
M ) (A.15)

and

(qB , pB) = (qB1 , . . . , q
B
N , p

B
1 , . . . , p

B
N ). (A.16)

The state of the composite system C = A + B is then given by
the vector (qA, qB , pA, pB) in the direct sum R2M ⊕R2N of the

phase spaces R2M and R2N . This state is unique.

Conversely, any state (qC1 , . . . , q
C
K , p

C
1 , . . . , p

C
K) of a system

C can be decomposed into a state (qA, pA) for subsystem A and

a state (qB , pB) for subsystem B with K = M+N . This decom-

position is unique.

The theorem is a direct consequence of the structure of
classical phase space. As a consequence, every system can
be uniquely characterized as a composition of its degrees of
freedom as shown in Eq. (A.3).

The situation in QM is very different. The analysis is due
to von Neumann [61, §VI.2]. We formulate his result in close
parallel with the result in CM.

Theorem A.2 Consider two systems A and B in QM with re-

spective kets |ΨA〉 and |ΨB〉. The state of the composite system
C is given by |ΨC〉 = |ΨA〉⊗|ΨB〉 in the tensor product HA⊗HB
of the phase spaces HA and HB. This ket is unique.

Conversely (von Neumann’s result), given a ket |ΨC〉 of a

system C, with associated statistical operator DC = |ΨC〉〈ΨC |,
it is possible to find two statistical operators DA and DB for

subsystems A and B such that

DA =
∞∑
n=0

λn|ΞA, n〉〈ΞA, n|

DB =
∞∑
n=0

λn|ΥB , n〉〈ΥB , n|

DC =
∞∑
n=0

λn|ΞA, n〉|ΥB , n〉 ⊗ 〈ΞA, n|〈ΥB , n|

(A.17)

This decomposition is unique.

For a general ket |ΨC〉 more than one weight λn is different
from zero, so that the separation of a system C = A + B does
not lead to a unique ket for each of the two subsystems A and
B; that only happens for product kets |ΨC〉 = |ΨA〉 ⊗ |ΨB〉.

Given two statistical operators DA and DB, the ket |ΨC〉
can be reconstructed from the sequences of kets (|ΞA, n〉)n and
(|ΥB , n〉)n together with the eigenvalues (λn)n and a sequence
of phases (ϕn)n

|ΨC〉 =
∞∑
n=0

√
λne

iϕn |ΞA, n〉 ⊗ |ΥB , n〉. (A.18)

The reconstruction of a general state |ΨC〉 from two statistical
operators DA and DB cannot be completed without the phases

(ϕn)n.
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The proof is well-known and can be found in many text-
books, in addition to von Neumann’s book, see for example
[51, §11-8]. The kets (|ΞA, n〉)n and (|ΥB , n〉)n are obtained as
the eigenvectors of the density operators, which are by defini-
tion real and positive, so that the eigenvectors are naturally
chosen as real. The decomposition is a special case of the
Schmidt decomposition [70,71]. That decomposition is writ-
ten without the phase factors because the functions (|ΞA, n〉)n
and (|ΥB , n〉)n do not have to be real in general.

These two theorems show that decomposition into subsys-
tems is unambiguous in CM, but it is in general not possible
in QM.

A.3 Superposition and entanglement

The phase space and the dynamical equation in QM are both
linear: If |Ψ〉 and |Φ〉 are valid kets for a physical system, then
a|Ψ〉 + b|Φ〉 is also a valid ket for any two complex numbers
a and b; if |Ψ, t〉 and |Φ, t〉 are valid evolutions for a physical
system as solutions of the SE, then a|Ψ, t〉 + b|Φ, t〉 is also a
valid evolution and a solution of the SE for any two complex
numbers a and b. Such a linear combination of states, kets,
and wave functions is called a superposition.

Superpositions in spaces that are tensor products lead
to a new feature that is very different from classical super-
positions of waves in water or in the electromagnetic field.
Consider a superposition an|α, n〉 + bn|β, n〉 for a single de-
gree of freedom labeled n. A valid ket for the system with N

degrees of freedom n = 1, . . . , N is the tensor product ket

N⊗
n=1

(cαn|α, n〉+ cβn|β, n〉). (A.19)

This ket is a superposition of the product kets

|p(1), 1〉 ⊗ . . .⊗ |p(N), N〉, (A.20)

where p is a map n 7→ p(n) ∈ {α, β}. There are 2N such kets.
The superposition is a very special one in that it is itself still
a tensor product of kets for each degree of freedom or each
subsystem. As shown by von Neumann in Theorem A.2, this
superposition is very much like a classical superposition of
waves and fields.

But superpositions in QM are in no way restricted to
such superposition; as a matter of fact, such superpositions
are rare because the superposition coefficients must have the
special product form cp(1)1 . . . cp(N)N . Because of interactions
between degrees of freedom or subsystems, the SE quickly
evolves tensor product states into states that are no longer
tensor products. The kets and wave functions can still be
written as superpositions of product kets like the ones in Eq.
(A.20), but the expansion coefficients no longer have the prod-
uct form. Such superpositions can be called entangled states,
because there is no way to decompose the state of the system
into states for the subsystems. The decomposition leads to
von Neumann statistical operators for the description of the
subsystem as given by Theorem A.2.

In a very interesting paper, Harshman and Ranade [46]
illustrate the pervasive and relative nature of entanglement,
by showing that any pure state can be written as an entan-
gled state by constructing a set of tailored observables that
give the Hilbert space in which the state is defined a tensor
product structure in such a way that the pure state is not
a product state. Their proof is valid for finite-dimensional
Hilbert spaces because they rely on a matrix representation
of the observables.

B Non-equilibrium statistical mechanics

To set notations and clarify conventions, we give a short sum-
mary of statistical mechanics, both classical and quantum.
We add the designation “non-equilibrium” to make clear that
we are interested in the dynamics of systems, not in the equi-
librium states introduced by Boltzmann and Gibbs [41] in
what is now also known as statistical thermodynamics [77].

B.1 Classical mechanics

Consider a classical system with N degrees of freedom. The
classical configuration space is the space RN of all vectors
q = (q1, . . . , qN ) and the classical phase space is H = R2N

with each point (q, p) = (q1, . . . , qN , p1, . . . , pN ) corresponding
to a state of the classical system. Note that, in the state, the
coordinate qi and its canonically conjugate momentum pi are
specified by independent values. A single degree of freedom in
mechanics is described by a coordinate qi and its velocity q̇i or
canonically conjugate momentum pi. It then makes sense to
write the phase space of a system with N degrees of freedom
as shown in Eq. (A.3).

Definition B.1 The statistical state of a classical system is
a probability measure σ on phase space H = R2N with associ-
ated probability distribution function (PDF) ρ(q, p) assigning
a probability

σ(S) =

∫
S

ρ(q, p)dN qdNp (B.1)

to any Borel22 set S ⊆ H.

A probability measure is normalized so that the proba-
bility of the whole space is equal to 1

σ(H) =

∫
H
ρ(q, p)dN qdNp = 1. (B.2)

The Hamilton flow of classical dynamics in phase space

(qt, pt) = Ft(q0, p0), (B.3)

i.e. the solution of Hamilton’s equations, then defines the evo-
lution of the statistical state as [43,53,97,57]

ρt(q, p) = ρ
(
F−t(q, p)

)
. (B.4)

The evolution σt of the measure follows from inserting Eq.
(B.4) into Eq. (B.1).

It follows from the above definition of the time evolution
that the density ρt of the statistical state σt satisfies the dif-
ferential equation

∂ρt(q, p)

∂t
= {H(q, p), ρt(q, p)}, (B.5)

called the Liouville equation (LE) [97]. Here

{f, g} =
∂f

∂q

∂g

∂p
−
∂g

∂q

∂f

∂p
(B.6)

is the Poisson bracket.
The evolution of the statistical state under the LE Eq,

(B.5) is completely equivalent to the states in phase space

22 On spaces like R2N Borel sets are sets that can be created
as unions and intersections of open hypercubes.
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moving under the Hamiltonian flow Eq. (B.3) or to evolution
under Hamilton’s equations.

The interpretation of the statistical state in the literature
varies: Boltzmann [41, §3.2] conceives of a classical system,
for example a gas, as a single system of a large number of
particles, with the statistical state characterized by specifying
that the state of the gas is confined to a given region, a subset
S ⊂ H of phase space. This makes the PDF the index function
ιS of that set, equal to one for points in the set and zero
otherwise.

Gibbs [41, §3.3], on the other hand, considers an ensemble
of identical systems with coordinates chosen randomly with
probability ρ(q, p)dN qdNp. This probability is interpreted as
frequency over the ensemble or as an average over time [41,
§3.3.4]. While the latter view is relevant for equilibrium states,
it is not meaningful in the context of dynamically evolving
non-equilibrium states.

As an example of a statistical state, the Boltzmann par-
tition for a gas in a container with volume V can be defined
as a finite measure by constructing the sets S(E) in phase
space with total energy E. For an ideal gas, this energy is
the sum of the kinetic energy of all atoms or molecules in the
gas. Then the PDF is given by weighing the sets with the
Boltzmann factor at temperature T

ρBoltz(q, p) = C exp

(
−
E

kT

)
ιS(E)(q, p) (B.7)

with C the normalization constant to satisfy Eq. (B.2). Phys-
ically more accurate models of the gas add interactions be-
tween the atoms or molecules and between the atoms or
molecules and the walls of the container, which results in
modified sets S(E) ⊆ H.

B.2 Collective variables from the statistical state

We propose to view the probability measure σ Eq. (B.1) in
a third way that is a blending of the two views of Boltz-
mann and Gibbs summarized in Section B.1. Consider the
fact that the measurement of a macroscopic observable, like
pressure, of a macroscopic system, like a gas, is never ac-
complished by explicitly and meticulously recording the po-
sition and momentum of every atom or molecule in the sys-
tem and then computing the macroscopic variable. Rather,
experiments measure macroscopic dynamical variables with
macroscopic devices that contain macroscopic controls such
as size, shape, position, pressure, volume, and temperature,
and these controls then are associated with the value of ob-
servables of the system under observation.

While the atomic hypothesis is of great value in the the-
oretical description of observed phenomena and in deriving
governing laws between observations, it is not directly rel-
evant as part of the practice of making observations. The
frequency interpretation of the statistical state as a probabil-
ity measure σ is therefore somewhat artificial: The measure
σ assigns a probability ρ(q, p)dN qdNp for each microscopic
state (q, p), but in practice one never obtains these states
as samples from a distribution as specified in the frequency
interpretation. Therefore, it is possible to think of the proba-
bility measure σ itself as the mathematical description of the
macroscopic state, i.e. we take the meaning of Definition B.1
to be:

1. In non-equilibrium statistical CM, the mathematical de-
scription of the state of a macroscopic physical system
with N degrees of freedom is the statistical state of the

system, i.e. the probability measure σ on the system’s
phase space H = R2N .

2. The macroscopic observables (volume, pressure, temper-
ature) are encoded in the probability measure σ and their
evolution follows from that of σt as derived by Eq. (B.4)
from the underlying flow Ft(p, q) in H = R2N , Eq. (B.3).

B.3 Quantum mechanics

The statistical state in quantum mechanics was introduced by
von Neumann [61] to describe a state for a quantum system
that is incompletely specified, i.e. as a mixture or Gemenge
[23, p. 21]. It is defined as the positive symmetric operator

D =
∞∑
n=0

pnPn =
∞∑
n=0

pn|n〉〈n| (B.8)

specifying the system to be in one of a number of kets |n〉
with positive weights pn. The normalization that the total
probability equal 1 then requires the operator to have trace
equal to 1

TrD =
∑
i

pi = 1. (B.9)

The operator D is called the statistical operator, density
operator, or density matrix.

The dynamical evolution of the statistical state is given
by the Liouville-von-Neumann equation (LvNE)

i~ d

dt
Dt = [H,Dt]. (B.10)

If the initial statistical operator is written with an or-
thonormal set of kets (|n〉)n, then its evolution under the
LvNE

Dt =
∞∑
n=0

pn|n, t〉〈n, t| (B.11)

is equivalent to the evolution of the kets according to the SE
and the numbers pn do not change in time, as in the classical
case.

As a positive symmetric operator, the statistical operator
can always be diagonalized, resulting in a unique composi-
tion of the statistical operator as a mixture of orthogonal
states with positive weights pn. But, as pointed first out by
Schrödinger [75,76,63,23], it is not possible to associate a
unique set of pure states that are linearly independent, but
not necessarily orthogonal, with a given statistical operator.
Therefore, it is not possible to directly interpret the numbers
pn as probabilities with the meaning of frequency of occur-
rence in experiments on ensemble of systems in the statistical
state described by D. Hence there is a clear distinction be-
tween the evolution of the statistical operator governed by
the LvNE and pure states governed by the SE. This situation
is different from the situation in statistical CM and that is the
core message of the statistical interpretation of QM [7,3,4]: It
is not possible to clearly and uniquely distinguish statistical
probabilities in mixtures from the innate probabilistic nature
of pure states; there is only one single unavoidable probabil-
ity notion in QM and it is not a purely statistical probability
as it is in CM.
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C Empiricism and realism

We summarize the context of concepts relevant to the mea-
surement problem in QM, see, for example, the book by de
Muynck [60]. The analysis by ABN [3,4] shows that the Born
probability rule can be derived from the dynamics of QM
provided the complexity necessarily associated with measure-
ment instruments is given proper consideration. This approach
is not new, for example d’Espagnat [27, §16.2] explores the
options of a single principle, namely the SE, in QM for chang-
ing the state, represented by a ket or a wave function. The
relative state formulation of Everett [39] is also based en-
tirely on the SE as the only principle for changing states.
The work by ABN appears to be the most exhaustive analy-
sis to date that shows that evolution in QM under the LvNE
leads to a unique outcome, which contradicts Everett’s claim
[39, p. 457] that “It seems that nothing can ever be settled
by such a measurement.”

C.1 Newton-Maxwell ontology

In Newtonian mechanics the ontology is clear: The world con-
sists of “objects with substance” that are described by coor-
dinates and their velocities subject to Newton’s law of force.
The mass of the object gives a measure of the amount of sub-
stance. Newtonian mechanics is scale invariant in that the
objects can be described at multiple levels, depending on de-
sired accuracy, either as monolithic objects with substance,
for example planets, or as composed of a number of moving
parts with substance, such as cars, or, applying the atomic hy-
pothesis, as assemblies of atoms with substance. The essence
of the ontology is that the degrees of freedom are described
by pairs of variables that at all times take on values that are
real numbers, one degree of freedom being specified by two
values. By using the ontology as a framework for thinking
about the world and the physics processes taking place in
it, the physicist can accurately and efficiently apply the for-
malism of Newtonian mechanics for computing descriptions
of observed processes and make predictions of planned or ex-
pected future observations.

The same ontology exists for Maxwell’s theory of electro-
magnetism, but now applied to the ontological element of a
“field of force” defined in all of space. The field is described
by a dynamical coordinate and its associated velocity, both
taking on a numeric value, defined in every point of space.
Einstein’s theories of relativity are consistent with this ontol-
ogy, both the special theory for particles and fields, and the
general theory adding space to the list of ontological elements.

We refer to this ontology as the Newton-Maxwell on-
tology.

When Einstein does the statistical analysis [35] of light
interacting with matter, he concludes that the observed be-
havior is consistent with that of a gas of photons. In Bohr’s
development of a description for atomic spectra [14], a theory
of the Periodic Table of Elements [15], and an explanation of
the chemical bond [16], he uses electrons moving in classical
circular and elliptic orbitals selected by the “quantum condi-
tion”. It is clear that Einstein and Bohr both work with the
Newton-Maxwell ontology.

Einstein [36] summarizes his view by stating that there
are two options:

(a) The (free) particle really has a definite position
and a definite momentum, even if they cannot both
be ascertained by measurement in the same individual

case. According to this point of view, the ψ-function
represents an incomplete description of the real state
of affairs.

and

(b) In reality the particle has neither a definite
momentum nor a definite position; the description by
ψ-function is in principle a complete description. The
sharply-defined position of the particle, obtained by
measuring the position, cannot be interpreted as the
position of the particle prior to the measurement. The
sharp localisation which appears as a result of the
measurement is brought about only as a result of the
unavoidable (but not unimportant) operation of mea-
surement.

Both Einstein [35] and Bohr [14] agreed on the appropriate-
ness of the notion that physical systems have properties that
are described mathematically by numbers, individual values
that are captured during the measurement process [50,42],
in particular for the pair of canonically conjugate variables
making up a degree of freedom. They were arguing about
whether the systems, like particles, have these values before
and after measurement, or only during the measurement pro-
cess. This view was prevalent and very successful at the time
and is beautifully described in the works by Sommerfeld [82]
and Born [20]. While Bohr advocated a conceptual comple-
mentarity [17] to understand the principles of QM and the
observations of quantum phenomana, Einstein wanted some-
thing more precise [37].

The ideas introduced by Einstein and Bohr remain valid,
even though the precise calculations to quantify the photo-
electric effect, the lines in atomic spectra, and the structure of
molecules are now done with the formalism developed in 1926
instead of the application of the quantum condition. It is nat-
ural that Einstein and Bohr, and others, considered the 1926
formalism as a new and improved, and more complicated and
highly unfamiliar, version of the quantum condition. They
assumed that the prevailing Newton-Maxwell ontology was
still applicable [17]. We argue in this paper that it is not
applicable.

C.2 State-measurement connection

In CM it is an experiential fact that measurements exist that
provide direct observation of the values taken by coordinates
and velocities, at least for measurements on sufficiently sim-
ple systems. This leads to the positivist idea that physics
theories can be and should be formulated such that experi-
mental observations are the foundation for all concepts [29].
The historically most important example is the observation
of the planetary positions (and velocities from multiple posi-
tions) by observing the Sun’s light reflected by the planets.
The second prominent example is the definition of the electric
and magnetic field strengths as the force felt by an infinites-
imal test charge.

Note that this does not preclude that with complex sys-
tems, such as automobile engines, some variables may not
be observable in a similarly direct way, but their values can
be reconstructed, by using the law of force, from the values
obtained for other dynamical variables that can be observed.

In their debate, Einstein and Bohr take the observation of
localized flashes produced by photons or electrons to be direct
information about the photons or electrons [50,42]. The anal-
ysis by ABN [3,4] conclusively shows that even the simplest
experimental observation of a quantum mechanical system is
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a complex multi-step process. It is unwarranted to conclude
that the state of a macroscopic device in an experiment pro-
vides a direct view on the microscopic quantum system that
initiated the event.

On the basis of the Newton-Maxwell ontology and with
the assumption that measurements in QM provide direct in-
formation about the state of quantum systems, Einstein and
Bohr argued about how the observed facts could be derived
from this ontology. In particular, they argued about whether
the values for coordinates and velocities (or momenta) were
present all the time or just during the measurement [50,42].
They did not consider the possibility [36] that the ontology
does not apply to QM and that all experimental observa-
tions in QM may have to be derived from the dynamics by
complex computations of quantum systems as shown, for ex-
ample, by ABN. Born’s probability rule [18,19] provides an
operational definition of the quantum mechanical state, ket,
and wave function, supporting the Newton-Maxwell ontology,
but it does not explain the connection.

The theory of measurement presented by ABN is rigor-
ous and minimalist. No special assumptions are introduced,
like hidden variables or spontaneous wave function collapse.
QM is assumed to be irreducibly probabilistic [3, p. 6] and
the analysis focuses on the ideal projection-operator mea-
surement as defined by von Neumann [61]. Contrary to the
Copenhagen interpretation, where two distinct processes are
assumed, the SE for dynamical evolution and the Born rule
for the measurement process, the measurement process is de-
rived in full detail from the dynamical evolution of the statis-
tical operator governed by the LvNE Eq. (B.10). That gives
the evolution for both the observed quantum system and the
macroscopic measurement apparatus.

We briefly summarize the stages in the dynamical process
that are identified in the analysis by ABN. They identify three
component systems in the analysis:

1. The microscopic quantum system S to be measured.

2. The macroscopic measurement apparatus and pointer sys-
tem M that will register, after some time, an outcome
correlated with the state of S.

3. A macroscopic system B that provides a heat bath to en-
sure that the measurement is irreversible as a dynamical
process.

The system is described by a statistical operator D, given
by Eq. (B.8), that evolves under the LvNE Eq. (B.10). The
dynamics is governed by the Hamiltonian with an important
role played by the terms describing the interactions between
the different systems. The different timescales in the process
are carefully analyzed and described by ABN with the follow-
ing summary of the process [3, Table 1, p. 103] [4]:

1. Preparation – create a metastable state in the apparatus
or pointer M ; the statistical operator is D = DS ⊗DM ⊗
DB .

2. Initial truncation – decay off-diagonal blocks of statistical
operator DM of the pointer.

3. Irreversible truncation – further interaction between the
pointer M and the bath B ensure that there is no recur-
rence of the off-diagonal blocks of DM .

4. Registration – S −M correlation is built up in diagonal
blocks of the statistical operator DM of the pointer to
correlate with the diagonal elements of DS in a process
that is similar to a phase transition [3, §7] and involves a
weak coupling to the bath B. This process ensures that
the pointer M reflects the state of the system S as it was
at the start of the measurement process: DS

aa ↔DM
aa.

5. Sub-ensemble relaxation – interaction terms in the Hamil-
tonian of the pointer ensure a consistent evolution in en-
sembles, so that sub-ensembles can be identified that ul-
timately lead to the outcome of a single run.

6. Reduction – gain of information in the pointer M about
the initial state of S with probabilities in accordance with
Born’s rule.

The majority of these steps will appear plausible to anyone
with experience in studying the measurement problem, ex-
cept possibly item 5. The need for the analysis of ensembles
and sub-ensembles comes from Schrödinger’s observation [75,
76,63,23] the statistical operator cannot be uniquely decom-
posed in terms of pure states, as discussed in Section B.3.
The reader is referred to ABN [4] for an in-depth and lucid
discussion.

C.3 Heisenberg-Dirac ontology

Bohr expected the answer would follow from a
direct analysis of the definition of the idealized
concepts, Heisenberg argued that the answer was
hidden in the formal structure of the theory and
that a closer scrutiny of this structure would
bring it to light.

Commentary of Rosenfeld in 1971 reproduced
from [93, p. 58]

Given Newton’s objects with substance governed by New-
ton’s law of force as the ontology of mechanics and the elec-
tromagnetic fields of force governed by Maxwell’s equations
as the ontology for electromagnetism, it stands to reason to
consider, similarly, the object governed by the Schrödinger
equation as the basic element in the ontology for QM: That
means taking the abstract ket introduced by Dirac [33], or
the wave function in any representation, to be of the same
quality of being as the objects with substance in Newtonian
mechanics and the fields of force in Maxwell theory. We refer
to this ontology as the Heisenberg-Dirac ontology.

d’Espagnat [29] discusses ontology of QM in depth, but
his analysis remains within the Newton-Maxwell ontology.
He does not follow Heisenberg, who, when he was thinking
about tracks in the bubble chamber [50,42], questions the
complexity of the measurement process and hoped to find
understanding in the mathematical formalism as opposed to
in experimental observations, as indicated by Rosenfeld’s re-
mark quoted above.

What if everything is made of kets? What if there are no
particles, no fields, no systems that can be described by de-
grees of freedom that consist of coordinate-momentum pairs
that take on values that are real numbers?

This brings us to a point where we are led to accept as
fundamental, realist postulates of QM the two assumptions
in Appendix A.1 at face value:

1. The ontological building block of QM is the ket.

2. The ket is governed at all times by the SE.

A ket is not a number. Since experiments obtain numbers, it
follows that measurements in QM cannot measure the ket of
any quantum system; some assembly is required.
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D Finite measures on Hilbert spaces

The study of measures on infinite-dimensional spaces is the
subject of stochastic analysis, a field in mathematics that
was initiated by the work on the space of paths of Brownian
motion by Norbert Wiener in 1923 [94].

The first counterintuitive property one encounters with
measure on and volume in infinite-dimensional spaces is the
fact that there is no translation-invariant measure like the
Lebesgue measure on an infinite-dimensional space [52, p. 32].
For the mathematically inclined reader, the fundamental rea-
son is that the unit ball in an infinite dimensional space is
not compact.

Theorem D.1 There does not exist a meaningful translation
invariant measure on an infinite-dimensional Hilbert space.

Proof Consider [24, p. 5] an orthonormal basis (|Φn〉)n in the
Hilbert space and a ball Bn with radius 1/2 centered at |Φn〉.
Assume that a translation invariant measure λ exists. Then
the measure of all these balls is the same V = λ(Bn) by
translation invariance, because they are all just translations
of the first one B0. It is easy to see that all these balls fit into
a bigger ball B with radius 2 centered at the origin and that
none of them overlap.

A proper measure must have the property that the volume
of a set B is larger than the sum of the measures of any
collection of non-overlapping sets Bn contained in B. Thus
we must have
∞∑
n=0

λ(Bn) ≤ λ(B). (D.1)

It follows that λ(B) is infinite as the sum of an infinite number
of equal terms.

This contradicts another requirement of reasonable mea-
sures, namely that the measure of a bounded set be finite.
Thus the only measure satisfying all requirements is one that
assigns the measure zero to all balls. It follows easily that
that measure must be identically zero. ut

Note that the proof uses translation, but the problem
really lies with rotations: It is possible to keep turning to new
directions in an infinite dimensional Hilbert space putting
new balls BN+1 that do not overlap with any ball B0, . . . , BN
we already have, while still remaining inside the big ball B.

Even though there is no σ-finite, translation invariant
measure, it is possible to define finite measures on infinite
dimensional spaces, like a Hilbert space, with all the right
properties [80,11]. A finite measure is one that assigns to the
total space a finite volume, which is chosen to be 1 by conven-
tion. A probability measure is an example of a finite measure.

The practical reader may suggest that there is no need
to work with infinite-dimensional spaces, as any computa-
tions can be carried out in spaces with a finite number of
dimensions to get approximations as close as needed. How-
ever, the issue is not confined to infinite-dimensional spaces:
It does show up in spaces with a large number of dimensions
and requires special attention to implement efficient and ac-
curate algorithms [87,58]. The methods developed to handle
the infinite-dimensional case provide ways to build such ef-
ficient algorithms for the case with a very large number of
dimensions.

In the literature on measure theory, with λ denoting the
Lebesgue measure, the Lebesgue integral of a function f over
a set S ∈ Rn is written in various ways as [67,81]∫
S

fdλ =

∫
S

f(x)dλ(x) =

∫
S

f(x)λ(dx) =

∫
S

f(x)dnx, (D.2)

where the last form is identical to the way Riemann integrals
are written. For general measures, any of these notations,
except the last one, can be found in the literature.

The best-known measures on infinite-dimensional spaces
are Gaussian measures γ [80,11]. These are defined by speci-
fying the mean Θ as an element of H

|Θ〉 =

∫
H
|Ψ〉γ(d|Ψ〉) (D.3)

and the covariance Γ as an operator on H

〈Ξ|Γ |Υ 〉 =

∫
H

(〈Ψ | − 〈Ξ|)(|Ψ〉 − |Υ 〉)γ(d|Ψ〉). (D.4)

The covariance operator must be symmetric, positive definite,
and trace class [80,11], i.e.

Γ > 0 TrΓ <∞ (D.5)

for the Gaussian measure to exist and have support in H and
not some larger space.

In finite dimensions, sets of measures zero can be safely
ignored in physics. For example, the Lebesgue measure of
individual points and curves in a two-dimensional space is
zero: λ({(x1, x2)}) = 0 and λ({(x1(t), x2(t))|t ∈ [0, 1]}) = 0,
respectively. A remarkable property of measures on infinite
dimensional spaces is that sets of measure zero can be big.

For example, the space of all kets |Ψ〉 in Hilbert space
with finite expectation value 〈Ψ |Γ−1|Ψ〉 < ∞ of the covari-
ance operator Γ is called the Cameron-Martin space Eγ of
the Gaussian measure γ. It has measure zero, γ(Eγ) = 0 [11,
thm 2.4.7]. To illustrate the “size” of the Cameron-Martin
space, consider the Wiener Bridge measure on the Hilbert
space L2([0, T ]) of square-integrable paths from x = 0 at time
t = 0 to x = 0 at time t = T [11,52]. This measure is Gaus-
sian and the covariance operator Γ has eigenvalues propor-
tional to 1/n2, so that it is trace class. The paths that count,
i.e. that provide the weight of the measure, are paths that
are Hölder continuous of order 1/2. These are paths that are
continuous and almost nowhere differentiable. They are the
paths of Brownian motion. They carry the full weight of the
measure in that the measure of all such paths is 1. All paths
that are in L2([0, T ]) and that are not continuous or that
are less smooth than Hölder continuous of order 1/2 form
a set of measure zero; these rougher paths carry no weight
for the Wiener Bridge measure. The subset of paths that are
continuous and almost everywhere differentiable turn out to
have finite expectation value for the covariance Γ and thus
form the Cameron-Martin space of the Wiener Bridge mea-
sure, which has measure zero. In other words, these smoother
paths (differentiable) do not carry any weight in the Wiener
Bridge measure either. That means they do not contribute to
any integral.
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