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Abstract 

Schumpeterian growth is a particular type of economic growth that is based on the 
endogenous introduction of new products and/or processes and is governed by the 
process of creative destruction described by Joseph Schumpeter (1942). This paper 
provides an exposition of the scale-effects property in the context of Schumpeterian 
growth models. In particular, the paper outlines the three distinct solutions to the scale-
effects problem, discusses their implications and offers an assessment of scale-invariant 
Schumpeterian growth models. 
 
JEL Classification: O40, O2, O3. 
 
Keywords: Economic growth, scale effects, technological change, Schumpeter. 
 
 
 
 
 
 
 
*Elias Dinopoulos would like to thank the Center for International Business Education 
and Research at the University of Florida for providing partial financial support. We 
would also like to thank Paul Segerstrom for very useful comments and suggestions. 

mailto:elias.dinopoulos@cba.ufl.edu
mailto:senerm@union.edu


1. Introduction 
 

Schumpeterian growth is a particular type of economic growth which is based on the 
process of creative destruction. The process of creative destruction was described in the 
writings or Joseph Schumpeter (1928, 1942) and refers to the endogenous introduction of 
new products and/or processes.  For instance, in Capitalism, Socialism and Democracy, 
chapter 8, Schumpeter states:  

 
The essential point to grasp is that in dealing with capitalism we are dealing with 

an evolutionary process…The fundamental impulse that sets and keeps the capitalist 
engine in motion comes from the new consumer goods, the new methods of 
production, or transportation, the new forms of industrial organization that capitalist 
enterprise creates…In the case of retail trade the competition that matters arises not 
from additional shops of the same type, but from the department store, the chain 
store, the mail-order house and the super market, which are bound to destroy those 
pyramids sooner or later.  Now a theoretical construction which neglects this essential 
elements of the case neglects all that is most typically capitalist about it; even if 
correct in logic as well as in fact, it is like Hamlet without the Danish prince.   
 
In other words, the essential feature of Schumpeterian-growth models is the 

incorporation of technological progress which is generated by the endogenous 
introduction of product and/or process innovations. The term “endogenous” refers to 
innovations that result from conscious actions undertaken by economic agents (firms or 
consumers) to maximize their objective function (profits or utility). Although 
Schumpeterian-growth theory formalizes only a subset of Schumpeter’s ideas, it is much 
closer to the concept of creative destruction than other existing economic growth 
theories.1  

The birth of Schumpeterian growth theory started in the late 1980’s and early 1990s 
with the publication of four articles and its rapid development has followed the general 
evolutionary process of creative destruction.2 The merit and robustness of key 
assumptions of earlier models have been questioned; certain implications have been 
tested and rejected; and state-of-the-art analytical techniques have resulted in new and 
more versatile models. Until the mid 1990s, growth theory witnessed a renaissance fueled 
by a rapidly expanding Schumpeterian growth literature under the label of “endogenous” 

                                                 
1  For instance, the neoclassical growth model assumes exogenous technological progress, the AK growth 
model focuses on the role of physical capital accumulation, and the Lucas (1988) model of growth 
emphasizes the importance of knowledge spillovers in the process of human-capital accumulation.  
 
2  The four studies that developed the foundations of Schumpeterian growth theory are Romer (1990), 
Segerstrom, Anant and Dinopoulos (1990), Grossman and Helpman (1991a) and Aghion and Howitt 
(1992). Dinopoulos (1994) provides an overview or earlier Schumpeterian-growth models, and Romer 
(1994) offers an excellent account on the origins of this theory. 
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growth. Hundreds of articles and at least three textbooks analyzed various features of the 
“new” growth theory focusing on the effects of policies on long-run growth and welfare.3   

By mid-1990s, the development of the theory reached a blind intersection. In two 
influential articles, Jones (1995a, 1995b) argued that earlier Schumpeterian growth 
models incorporate a scale-effects property: The rate of technological progress is 
assumed to be proportional to the level of R&D investment services (which in turn are 
produced with a standard constant-returns-to-scale production function). For instance, if 
one doubles all R&D inputs, then the level of R&D investment doubles as well. This 
scale-related property implies that an economy’s long-run per capita growth rate 
increases in its size, measured by the level of population.  In the presence of positive 
population growth, the scale-effects property implies that per capita growth rate increases 
exponentially over time and it becomes infinite in the steady-state equilibrium.  Jones 
argued that the scale-effects property is inconsistent with time-series evidence from 
several advanced countries. This evidence shows that resources devoted to R&D have 
been increasing exponentially, but the growth rates of total factor productivity and per 
capita output remain roughly constant over time.   

 The Jones critique raises the following fundamental questions: Is the scale-effects 
property empirically relevant? Can one construct Schumpeterian growth models with 
positive population growth and bounded long-run growth?  Can one develop scale-
invariant Schumpeterian growth models which maintain the policy endogeneity of long-
run growth? Affirmative answers to these questions are crucial for the evolution of 
Schumpeterian growth theory for the following reasons. First, removal of the scale- 
effects property enhances the empirical relevance of the theory.  Second, scale-invariant 
Schumpeterian growth models with endogenous technological change represent one more 
step towards a unified growth theory which would eventually combine the insights of 
neoclassical and Schumpeterian growth theories. Third, the development of scale-
invariant long-run endogenous growth theory enhances their policy relevance and brings 
the theory closer to the spirit of Joseph Schumpeter (1937) who stated: “There must be a 
purely economic theory of economic change which does not merely rely on external 
factors propelling the economic system from one equilibrium to another. It is such 
theory…that I have tried to build …[and that] explains a number of phenomena, in 
particular the business cycle, more satisfactorily than it is possible to explain them by 
means of either the Walrasian or the Marshalian apparatus”.  

 This paper intends to introduce the reader to the recent developments in 
Schumpeterian growth theory and to provide several useful insights on the scale-effects 
property. The rest of the paper is organized as follows. Section 2 uses a simple analytical 
framework borrowed from Dinopoulos and Thompson (1999) and Jones (1999) to 
highlight the mathematics and economics of the scale-effects property and to illustrate 
three basic approaches to generating scale-invariant Schumpeterian growth. Section 3 
offers an assessment of scale-invariant Schumpeterian growth models. Section 4 offers 
several concluding remarks and suggestions for further research. 

 
 

                                                 
3  A survey of this literature lies beyond the scope of this paper. The interested reader is referred to 
Grossman and Helpman (1991), Barro and Sala-i-Martin (1995) and especially Aghion and Howitt (1998) 
for more details. 
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2. An Anatomy of Scale-Effects  
 

The scale-effects property in Schumpeterian growth models is related to two 
fundamental modeling building blocks: an economy’s knowledge production function 
and its resource constraint. The former links the growth rate of knowledge (which is 
identical to the growth rate of technology) to R&D resources via a constant-returns-to-
scale production function.4 The latter requires that the sum of resources devoted to all 
activities must not exceed the available supply of these resources at each instant in time.  
 We can illustrate the role of the knowledge production function and the resource 
constraint by considering the simplest possible version of a Schumpeterian growth model.  
Consider an economy in which final output is produced by the following production 
function:  

 
   )t(L)t(A)t(Y Y= ,     (1) 
 

where Y(t) is the economy’s final output at time t, A(t) is the level of technology and LY(t) 
is the amount of labor devoted to manufacturing of Y(t).  The following knowledge 
production function governs the evolution of technological progress 

 

   
)t(X
)t(L

)t(A
)t(Ag A

A =≡
&

,     (2) 

 
where gA denotes the growth rate of technology, LA(t) is the amount of aggregate 
resources devoted to R&D (i.e., the economy’s scientists and engineers), and X(t) is a 
measure of R&D difficulty. Higher values of X(t) imply that the same amount of R&D 
resources generates a lower growth rate of technology.5 In other words, the inverse of 
X(t) is the total factor productivity in R&D. As will become clear below, assumptions that 
govern the evolution of X(t) play a crucial role in regulating the scale-effects property and 
in conditioning the nature of long-run Schumpeterian growth. 

 For the time being, assume that labor is the only factor of production, and that the 
production of X(t) does not require any economic resources. Under these two 
assumptions, the economy’s resource constraint can be expressed by the following full-
employment-of-labor condition 

 
  )t(L)t(L)t(L AY =+ ;    (3) 
 

where  denotes the level of labor force (population) at time t, which is one 
measure of the economy’s size; and g

Ltg
0eL)t(L =

L > 0 is the rate of population growth. The resource 
                                                 
4  The reason that the growth rate of technology (as opposed to just the change in the level of technology) 
enters on the left-hand-side of the knowledge production function can be traced to the non-rivalry of ideas. 
Romer (1990) provides an excellent discussion on this basic difference between the production of goods 
and the generation of ideas. 
 
5  Segerstrom (1998) was the first to introduce variable X(t) in the knowledge production function of a 
scale-invariant Schumpeterian growth model based on quality improvements. 
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condition states that at each instant in time the amount of labor devoted to manufacturing 
plus the amount of labor devoted to R&D equals the economy’s labor force. 
 Denote with s(t) = LY(t)/L(t) the share of labor force employed in manufacturing. 
Equation (1) implies that the economy’s per capita income is y(t) = Y(t)/L(t) = A(t)s(t).  
Since s(t) is bounded from above by one and from below by zero, it must be constant at 
the steady-state equilibrium ( i.e., s(t) = s) and thus the long-run growth rate of output per 
capita is given by  
 

   
)t(X
)t(L)s1(

)t(A
)t(A

)t(y
)t(yg y −==≡

&&
 ,    (4) 

 
where equations (2) and (3) along with s(t) = LY(t)/L(t) were used to derive the right-
hand-side of equation (4). Equation (4) states that the steady-state growth rate of output 
per capita equals the growth rate of technology. The latter is directly proportional to the 
economy’s size, measured by the level of population L(t), and inversely proportional to 
the level of R&D difficulty X(t).  
 Dividing both sides of the resource condition (3) by the level of population and 
substituting LA(t) = gAX(t), (see equation (2)) yields the following per capita resource 
condition: 
 

   1
)(
)(
=+

tL
tXgs A .      (5) 

 
 Equations (4) and (5) illustrate the basic building blocks of Schumpeterian growth 
models and hold at each instant in time independent of market structure considerations 
and independent of whether technological progress takes the form of variety 
accumulation or quality improvements. In the steady-state equilibrium, the share of labor 
devoted to manufacturing, s, and the growth rate of technological progress, gA, must be 
constant over time. Consequently, the level of per capita R&D difficulty captured by the 
ratio X(t)/L(t) must be constant in the long run.  
 
2.1. Earlier Schumpeterian Growth Models  

Earlier models of Schumpeterian growth generate endogenous long-run growth by 
adopting two basic assumptions. First, they assume that the labor force is constant over 
time, i.e., gL = 0, and thus L(t) = L0 in equations (4) and (5). Second, they typically 
assume that the R&D difficulty is a constant parameter, i.e., X(t) = X0.  These two 
assumptions imply that X(t)/L(t) = X0 /L0 is constant over time and therefore equations 
(4) and (5) hold. In addition, it is obvious from equation (4) that long-run Schumpeterian 
growth is bounded and that any policy that alters the level of R&D resources,                

, affects the rate of long-run growth g0A )1( LsL −= A. Consequently, long-run 
Schumpeterian growth is endogenous in these models.  
 Romer (1990) developed such an endogenous Schumpeterian growth model based 
on horizontal product differentiation in which variety accumulation in intermediate 
capital goods drives the evolution of technological change. Segerstrom, Anant and 
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Dinopoulos (1990), Aghion and Howitt (1992) and Grossman and Helpman (1991a, 
1991b) set up the foundations for the development of the quality-ladders Schumpeterian 
growth model in which quality improvements based on stochastic and sequential R&D 
races constitute the source of endogenous growth. An extensive body of literature further 
developed the insights of these earlier Schumpeterian growth models.6

 Jones (1995a) criticized the empirical relevance of this class of Schumpeterian 
growth models by focusing on the above-mentioned assumptions. He pointed out that 
various measures of per capita growth—such as the growth rate of total factor 
productivity, the flow of patents, and even the growth rate of income per capita—have 
remained roughly constant over time, whereas resources devoted to R&D—such as the 
number of scientists and engineers—have been increasing exponentially over time.
 In the presence of positive population growth, i.e., gL > 0, the right-hand-side of 
(2) and (4) grows exponentially over time at the rate of population growth, but this leads 
to unbounded long-run growth of per capita output. In other words, under the assumption 
that X(t) = X0, as the scale of the economy increases, so does the rate of long-run 
Schumpeterian growth. This unrealistic prediction is evident in the knowledge production 
function (4) and the resource condition (5), which represent two sides of the scale-effects-
property coin. Following  Jones’ (1995a) critique, it became clear to growth theorists that 
there are strong theoretical and empirical arguments that called for the removal of scale 
effects from earlier Schumpeterian growth models. 
 
2.2. Exogenous Schumpeterian-Growth Models without Scale Effects 
 

The first approach to the removal of scale effects employs the notion of 
diminishing technological opportunities. Jones (1995b) adopted this notion in a variety-
expansion growth model a la Romer (1990), Segerstrom (1998) used the same approach 
in a quality-ladders Schumpeterian growth model, and Kortum (1997) provided 
theoretical foundations for the assumption of diminishing technological opportunities. 
The present framework can illustrate this approach by assuming that the level of R&D 
difficulty X(t) increases over time as the level of technology A(t) rises: 

 
    ,     (6) ϕ/1)t(A)t(X =
 

where φ > 0 is a constant parameter that captures the degree of diminishing technological 
opportunities. In Schumpeterian growth models of vertical product differentiation, the 
scale-effects property is removed by assuming that the level of R&D difficulty increases 
as R&D investment accumulates over time in each industry during an R&D race 
(Segerstrom, 1998) or when the R&D race ends and innovation occurs (Li, 2003). It is 
obvious from equations (4) and (5) that since X(t)/L(t) must be constant over time in the 
steady-state equilibrium, the growth rate of R&D difficulty must be equal the exogenous 
growth rate of population, that is . Equation (6) implies 
that the rate of growth of X(t) is proportional to the rate of growth of technology: 

Lg)t(L/)t(L)t(X/)t(X == &&

                                                 
6  Aghion and Howitt (1998) provide and excellent exposition of this body of literature. 
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ϕ/g)t(X/)t(X A=& . Combining these two expressions yields the basic result of this 
strand of literature: 
 
    LA gg ϕ= .      (7) 
 
The growth rate of technology (and per capita income) is proportional to the exogenous 
population growth rate with the proportionality factor given by the parameter φ. The 
economic intuition associated with equation (7) is as follows: In the steady-state 
equilibrium because of diminishing returns to R&D efforts, individual researchers 
become less productive as the level of knowledge increases over time. To maintain a 
constant rate of innovation and growth, there must be an expansion in the employment of 
researchers. This is possible only if the economy’s population is growing at a positive 
rate.  If φ approaches zero, the level of R&D difficulty approaches infinity and economic 
growth stops. If φ approaches infinity, the level of R&D difficulty approaches unity and 
is time invariant. In this case, as the level of population increases exponentially, long-run 
Schumpeterian growth approaches infinity. 

 Since the population growth rate gL and the parameter φ are not affected by 
policies by assumption, this class of models generates exogenous Schumpeterian growth 
without scale effects. It should be emphasized though, that, unlike the neoclassical model 
in which the rate of technological change is assumed to be constant in the short and long 
run, exogenous Schumpeterian growth models generate changes in the rate of 
technological change during the transition to the steady-state equilibrium. To see this, 
define per capita R&D difficulty as x = X(t)/L(t), which implies that 

LA g)/g(x/x −= ϕ& . Notice that the resource condition defines the steady-state value of 
x as a function of the model’s parameters. If a change in a policy-related parameter 
increases the steady-state value of x, then during the transition to the new long-run 
equilibrium, . This means that 0x>& LA g)t(g ϕ> , that is, there must be a temporary 
acceleration in the rate of technological change.7 In addition, these models are relatively 
simple to handle and generate interesting welfare results.   

 
2.3. Endogenous Scale-Invariant Schumpeterian-Growth Models  
 

The second approach to the scale-effects problem employs a two-dimensional 
framework with horizontal and vertical product differentiation: Horizontal product 
differentiation takes the form of variety accumulation and removes the scale-effects 
property from these models in a way similar to the one used by exogenous Schumpeterian 
growth models. Vertical product differentiation takes the form of quality improvements 
or process innovations and generates endogenous long-run growth. This approach 
postulates a proportional relationship between (aggregate) R&D difficulty and the 

                                                 
7  Since policy changes have temporary effects on growth, Dinopoulos and Segerstrom (1999) christen this 
specification as the TEG specification of R&D difficulty. Segerstrom (1998) and Dinopoulos and 
Segerstrom (1999) provide more details on the implications of the TEG specification for transitional 
dynamics.  
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number of varieties. Under the right market structure assumptions the number of 
varieties, in turn, can be shown to be proportional to the size of population. 

Consequently, a linear relationship emerges between R&D difficulty and the size 
of population which removes the scale-effects property and hence establishes the variety-
expansion mechanism. The variety-expansion approach was suggested independently by 
Peretto (1998), where vertical product differentiation takes the form of process 
innovations, and Young(1998), where vertical product differentiation is modeled as 
quality improvements. Aghion and Howitt (1998, chapter 12), Dinopoulos and Thompson 
(1998) and Howitt (1999) have further developed this approach.  

To illustrate the variety-expansion approach to the scale-effects problem, we need 
to introduce a bit of additional economic structure to the basic framework. Consider an 
economy consisting of n(t) structurally identical industries (firms) producing horizontally 
differentiated products (varieties). Assume that each industry’s output is given by 

, where z(t) is the industry specific output, Az)t(A)t(z lι= ι(t) is the industry-specific 
level of technology and  is the number of manufacturing workers employed in a 
typical industry. The knowledge production function in a typical industry is  

zl

 

   A)t(A
)t(Ag l

&
=≡

ι

ι
ι ,     (8)  

 
where gι is the rate of industry-specific technological change, and  is the number of 
R&D researchers employed in a typical industry. Equation (8) implies that the evolution 
of technological change within an industry exhibits scale effects: If the number of 
researchers  doubles, then the growth rate of technology doubles as well. 

Al

Al

 
The aggregate level of output in this economy is given by 

. Therefore, the growth rate of per capita output y(t) = 
Y(t)/L(t) is given by  

)t(n)t(A)t(n)t(z)t(Y zlι==

 

   LALy g
)t(n
)t(ng

)t(n
)t(n

)t(A
)t(A

)t(y
)t(yg −+=−+=≡

&
l

&&&

ι

ι .  (9) 

 
Observe that constant steady-state growth rate gY requires that both  and 

remain constant over time.  
Al

)t(n/)t(n&
We follow Aghion and Howitt (1998, chapter 12) and propose a simple 

mechanism to determine to determine the evolution of n(t). Assume that the number of 
varieties n(t) grows over time as a result of serendipitous imitation. Each imitation results 
in a new industry with the same technology level as the other industries. Each person in 
the economy has the same exogenous instantaneous probability of imitation ξdt, where ξ 
is the intensity of the Poisson process that governs the arrival of new varieties. This 
implies that )t(L)t(n ξ=& . For  = )t(n/)t(n& )t(n/)t(Lξ to be constant, n(t) must grow at 
the rate of L(t), which equals the population growth rate gL. This implies that the per 
capita number of varieties n(t)/L(t) converges to the constant ξ/gL, which establishes  
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n(t) = [ξ/gL]L(t) = βL(t),    (10) 

 
where β = ξ/gL is used to simplify the expression. It is important to emphasize that the 
linear relationship between the number of varieties and the level of population is derived 
from a market-based mechanism with solid micro foundations. For instance, Young 
(1998, equation (17)) generates a version of equation (10) under the standard assumptions 
of monopolistic competition and fixed-entry costs.8  
 Adopting the Aghion and Howitt (1998) mechanism, we can write the economy-
wide resource constraint as )t(L)t(n)t(n Az =+ ll , which states that at each instant in 
time the amount of manufacturing and R&D labor must be equal to the size of 
population. Substituting (10) in this expression yields the following per capita resource 
condition: 
 

    
β
1

Az =+ ll  .     (11) 

 
In the steady-state equilibrium, the amount of labor devoted to manufacturing  and 
R&D  activities within each industry must be constant over time. This implies that the 
increase in the level of population is absorbed by the proportional expansion of varieties 
(industries). Substituting = g

Zl

Al

)t(n/)t(n& L in (9) implies that the long-run growth rate of 
per capita output is: 
 

Ay )t(A
)t(A

g l
&

==
ι

ι .     (12) 

 
Any policy that changes the allocation of labor between manufacturing and R&D within 
each industry affects long-run growth.  In this sense, the removal of scale effects through 
the variety-expansion approach generates endogenous scale-invariant long-run 
Schumpeterian growth. If final output is given by a CES production function, say  
 

    , 
ρ

ρ
⎟
⎠
⎞

⎜
⎝
⎛= ∫ di)i(zY

n 

0 

/1

 
where ρ > 1, then substituting the corresponding expressions for z(t), and using (12) 
yields the following expression for long-run Schumpeterian growth:  

LAy g)1(g −+= ρl . In addition to the endogenous component of long-run growth, an 

                                                 
8  A similar result has been obtained by Kelly (2001) in a Schumpeterian growth model that distinguishes 
between innovating and non-innovating industries and allows for spillovers from innovating industries to 
neighboring industries. In this model, knowledge spillovers from innovating industries located on the 
border of the industry space results in the creation of a new industry. Kelly finds that scale effects are 
removed if and only if the growth rate in the number of industries equals the growth rate of population.  
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exogenous component, proportional to the rate of population growth, is added to the 
long-run growth expression. 
 The relationship between the level of R&D difficulty X(t) and the number of 
varieties n(t) can be readily established if one assumes an aggregate knowledge 
production function as before 
   

)t(X
)t(n

)t(X
)t(L

)t(A
)t(Ag AA

A
l&

==≡  ,  (13) 

 
where A(t) is the economy-wide level of technology and )t(n)t(L AA l=  is the economy-
wide amount of labor devoted to R&D. If  is constant, then bounded steady-state 
growth requires that the level of R&D difficulty grow at the rate of variety expansion, 
which in turn equals the rate of population growth; that is,  = = 
g

Al

)t(X/)t(X& )t(n/)t(n&
L. This implies a linear relationship between the level of R&D difficulty and the size of 

population  
     
    X(t) = κL(t),      (14) 
 
where κ > 0 is an inconsequential positive parameter. It is clear from the above 
discussion that R&D is becoming more difficult as the number of varieties expands in 
such a way that the amount of resources per industry remains constant over time.  
 The third approach to the removal of scale effects employs the notion of Rent 
Protection Activities (RPAs). This novel approach has been proposed by Dinopoulos and 
Syropoulos (2006) in the context of a quality-ladders Schumpeterian-growth model 
developed by Grossman and Helpman (1991a). In quality-ladders models, there is a 
continuum of structurally-identical industries covering the unit interval. In each industry 
the state-of-the-art quality product is produced by an incumbent monopolist who earns 
temporary economic profits (rents). Challengers raise claims to these rents by engaging in 
R&D investment to discover a higher-quality product and replace the incumbent 
monopolist. The latter has strong incentives to devote resources in various activities to 
protect her/his intellectual property and prolong the duration of temporary monopoly 
rents. Examples of RPAs include investments in trade secrecy, increasing the complexity 
of the product to reduce knowledge spillovers to potential challengers, expenditures to 
sustain legal teams to litigate patent infringement disputes and so on. In models that 
adopt the rent-protection approach to the removal of scale effects, the discovery of new 
products in each industry is governed by sequential stochastic innovation contests (as 
opposed to R&D races). Challengers choose the level of R&D investment and 
incumbents choose the level of RPAs. The level of R&D difficulty X(t) is assumed to be 
directly proportional to the level of RPAs, and therefore it is endogenous.  

We can illustrate the RPA approach to scale-invariant endogenous Schumpeterian 
growth by using our basic framework. Following Dinopoulos and Thompson (1999), one 
can model the level of technology in quality-ladders growth models as  , 
where λ > 1 is a parameter measuring the size of each innovation and q(t) is the expected 
number of innovations at time t in a typical industry. There is a continuum of 
independent, structurally-identical industries covering the unit interval. The expected 

)t(q)t(A λ=
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flow of innovations per unit (instant) of time is governed by a Poison process with 
intensity I(t). Following Segerstrom (1998), we model the intensity of the Poisson 
process as , where L)t(X/)t(L)t(I A= A(t) is the industry (and economy) wide level of 
resources devoted to R&D, and X(t) is the level of R&D difficulty. The assumption of a 
continuum of industries implies that aggregate growth is deterministic and the number of 
economy-wide innovations q(t) obeys the differential equation )t(I)t(q =& . Taking logs 
and differentiating the level of technology A(t) and substituting the above derived 
expressions yields an aggregate knowledge production function in quality-ladders 
Schumpeterian growth models: 

 

   
)t(X
)t(L][log)t(I][log

)t(A
)t(Ag A

A λλ ==≡
&

.   (15) 

 
Assume now that rent-protection services are produced using labor only that is 

specific to the production of these activities, say, lawyers. For simplicity of exposition, 
suppose that one unit of lawyer produces one unit of RPAs. The aggregate supply of 
lawyers H(t) is an exogenous fraction of population; thus, )()( tLtH θ= , where 0 < θ < 1 
is a parameter. The remaining fraction of the labor force 1 – θ constitutes the supply of 
non-specialized labor which is allocated between manufacturing and R&D activities: 

)t(L)1()t(L)t(L AY θ−=+ . Let R(t) represent the level of industry-wide (and 
economy-wide) RPA. If one assumes that X(t) = βR(t) with β > 0, which means that the 
level of R&D difficulty X(t) is proportional to level of RPAs, then the full-employment 
condition for specialized labor is given by  

 
   )t(L][)t(X βθ= .      (16) 
 

Substituting equation (16) into (15) yields the main result of the RPA approach 
 

    ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=≡

)t(L
)t(Llog

)t(A
)t(Ag A

A βθ
λ&

.    (17) 

 
 Dividing both sides of the full-employment condition for non-specialized labor 

by the level of population and using (15) yields, with the exception of inconsequential 
constant parameters, equation (5). Equation (16) assures that the per capita full-
employment condition for non-specialized labor holds independently of whether or not 
there is positive population growth.  

In the steady-state equilibrium, as the supply of labor increases exponentially, 
both the equilibrium number of R&D researchers employed by challengers and the 
number of lawyers employed by incumbents rise exponentially. The two effects cancel 
each other and the scale-effects property is removed. Notice that (17) does not depend on 
the population growth rate and holds even if the level of population is constant over time.  
The long-run growth rate of technology (and per capita utility) depends positively on the 
size of innovations, and on the share of labor devoted to R&D. Any policy that shifts 
resources from manufacturing to R&D activities increases the level of long-run 
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Schumpeterian growth. In addition, changes in the effectiveness of RPAs (captured by β) 
or changes in the fraction of population engaged in RPAs (captured by θ) affect the rate 
of long-run growth.  

 
3.  An Assessment 

 
In this section we offer a few remarks which provide an admittedly subjective 

assessment of scale-invariant Schumpeterian growth models. The first remark has to do 
with a somewhat exaggerated criticism directed at the functional robustness of scale-
invariant Schumpeterian growth models. Notice the striking similarity between equations 
(14) and (16). In both classes of endogenous Schumpeterian growth models, the level of 
R&D difficulty is a linear function of the level of population. This linear functional form 
has been characterized as a “knife-edge” property that is unsatisfactory because it lacks 
functional robustness (see Jones 1999, and especially Li, 2000 and 2002).  

We believe that the emphasis on functional robustness is rather misguided and it 
is largely based on a natural tendency to differentiate newly developed models from old 
ones. Even if one views (14) and (16) as knife-edge features, there are many examples of 
knife-edge properties and assumptions in economic theory. A case in point is the 
assumption of constant returns to scale, which requires that, if all inputs of production 
double then output exactly doubles. This assumption has been used routinely to support 
perfectly competitive markets in a variety of contexts including neoclassical growth 
theory.9 Another well accepted knife-edge property is the saddle-path stability condition 
as shown in the Cass-Koopmans-Ramsey version of the neoclassical growth model and in 
Segerstrom’s (1998) scale-invariant growth model (among numerous others).  

Finally, Temple (2003) points out that in the steady-state equilibrium, the 
neoclassical growth model allows only labor-augmenting technological progress or the 
employment of a Cobb-Douglas aggregate production function.10

Another defense for the linear relationship between the level of R&D difficulty 
and the level of population is based on the following conjecture: For any approach that 
generates scale-invariant endogenous Schumpeterian growth, there exists a market-
based mechanism that determines endogenously the evolution of R&D difficulty.  In the 
variety-expansion approach, profit-maximization considerations coupled with market-
driven free entry of monopolistically competitive firms establish the required linearity 
between X(t) and the level of population L(t). In the rent-protection approach, the optimal 
choice of RPAs by the typical monopolist to maximize expected discounted profits 

                                                 
9  Incidentally, the argument that endogenous Schumpeterian growth models require knife-edge conditions 
can be equivalent to criticizing the constant returns to scale property of the knowledge production function. 
To see this, consider for instance, the variety expansion model of section 2.3. and assume that 

, with α ≠ 1. It is straightforward to show that the rate of per capita income growth would 
then equal to g

αξ )]t(L[()t(n =&

y ≡ + [ /n] – gAl )t(n& L =φL(t)(1 – α) + (α – 1)gL; hence, the scale-effects property would 
emerge. More specifically, if 0 < α < 1, then growth increases exponentially as t goes to infinity. If α = 1, 
then = φ, and growth is endogenous so long as φ can be affected by policy (original case). Finally if α > 
1, then g

Al

Y = (α – 1)gL as t goes to infinity. These results are similar to the ones presented in Jones (1999, 
p.142)  
 
10  Jones (2003) provides an excellent discussion of this issue. 
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generates this linear relationship. In contrast, exogenous Schumpeterian growth models 
assume that the level of R&D difficulty is tied to the level of technology and, therefore, is 
not directly market determined.  

The following remark on the “functional robustness” debate is borrowed from  
Temple (2003), who offers an excellent and insightful discussion on the long-run 
implications of growth theory. In the conclusion section of his paper he states the 
following “Five Obvious Rules for Thinking about Long-Run Growth”: 

 
1) Remember that the long-run is a theoretical abstraction that is sometimes of 
limited practical value. 2) Do not assume that a good model of growth has to yield 
a balanced growth path, or that long-run growth has to be endogenous. 3) Do not 
dismiss a model of growth because the long-run outcomes depend on knife-edge 
assumptions. 4) Remember that long-run predictions may be impossible to test. It 
will be extremely difficult to distinguish between models based on their 
predictions about long-run outcomes. 5) Do not undervalue level effects.   
 
We fully agree with Temple’s point of view that the knife-edge assumptions of 

endogenous growth models should be seen in a forgiving light and the emphasis should 
be placed on their comparative statics and especially the welfare properties of 
Schumpeterian growth models. 

These remarks lead us to the following suggestion. Analyzing the steady-state 
equilibrium properties of Schumpeterian growth models is still very useful because it is 
simply easier to analyze long-run equilibrium than analyzing the transitional dynamics. 
We propose a shift from debating the robustness of particular assumptions in specific 
models to assessing the robustness of policy changes across various models, including 
those that carry the scale-effects property. For example, consider the current controversial 
issue of the dynamic effects of globalization on relative wage income inequality between 
advanced (North) and poor (South) countries.  If one models globalization as an increase 
in the size of the South (motivated by China’s entry into the world trading system), then 
the following three quality-ladders growth models of North-South product-cycle trade 
provide specific answers to this question: Grossman and Helpman (1991c) using an 
endogenous Schumpeterian growth model with scale effects find that an increase in the 
size of the South does not affect the relative wage of Northern workers.11 Şener (2006) 
uses a scale-invariant endogenous Schumpeterian growth model based on RPAs to 
establish that globalization increases the relative wage of Northern workers. Dinopoulos 
and Segerstrom (2006) employ a scale-invariant exogenous Schumpeterian growth model 
to establish that an increase in the size of the South reduces the relative wage of Northern 
workers. Could one trace these different predictions to knife-edge assumptions? We 
seriously doubt that this can be achieved without examining in more detail the structure 
of each model. 

 Our final remark has to do with the terminology employed in the present paper 
compared to that used by other growth researchers. Following the path-braking work of  

                                                 
11  They actually consider two regimes: efficient and inefficient followers regimes. Each one has different 
wage implications. In the efficient followers regime (the more general case), an increase in the size of the 
South does not change the relative wage. In the inefficient followers regime, the relative wage of North 
moves in an ambiguous direction as the size of the South expands. 

 13



Romer (1990), earlier Schumpeterian growth models established what was called 
endogenous growth theory. This normative (policy-related) term became quickly popular 
because it accurately captured the property that in these earlier Schumpeterian growth 
models policy changes affected long-run per capita growth. In contrast, the neoclassical 
growth model predicts that per capita long-run growth is policy invariant. The 
development of scale-invariant growth models generated a class of growth models in 
which policy changes do not affect long-run growth making the term “endogenous” 
growth somewhat fuzzy and inaccurate. We believe that the policy-neutral term 
“Schumpeterian” growth describes accurately and clearly all four classes of growth 
models and offers the well-deserved and long overdue credit to Joseph Schumpeter.  
  
4. Conclusions 
 

The present paper provided an overview of recent developments in Schumpeterian 
growth theory, which envisions economic growth through the endogenous introduction of 
new products and/or processes. A simple theoretical framework was utilized to illustrate 
the scale-effects property of first-generation Schumpeterian growth models and to 
describe somewhat more formally the new directions of the theory. Three classes of 
Schumpeterian models generate scale-invariant long-run growth depending on how the 
R&D difficulty is modeled. The diminishing technological opportunities approach 
generates exogenous long-run Schumpeterian growth, whereas the variety-expansion and 
the rent-protection approaches yield endogenous long-run growth. We offered our own 
conjecture on what we believe is the distinguishing feature of endogenous and exogenous 
scale-invariant Schumpeterian growth models:  For any endogenous scale-invariant 
growth approach, there exists a market-based mechanism that directly determines the 
evolution of R&D difficulty endogenously. One interesting direction of future research is 
to establish formally the validity of this conjecture.  
 The development of scale-invariant Schumpeterian growth models draws 
legitimacy from three important considerations: First, the scale-effects property embodied 
in earlier models yields the counterfactual prediction that increasing R&D inputs generate 
higher long-run growth. This prediction is inconsistent with time-series evidence from 
several advanced countries. Second, in the presence of positive population growth, 
models with scale effects generate infinite per capita long-run growth. This is clearly 
unsatisfactory for researchers who are interested in analyzing the long-run properties of 
growth models. Third, scale-invariant growth models represent another important step 
towards a unified growth theory that combines the robustness and empirical relevance of 
the neoclassical growth model and the Schumpeterian mechanism of creative destruction. 
For instance, Jones (1995b) and Aghion and Howitt (1998, chapter 12) have already 
developed such integrated-growth models. More work in this exciting and important 
direction is needed.  
 We view the first and second generation Schumpeterian growth models as 
horizontally differentiated approaches to Schumpeterian-growth theory. Time and more 
research will tell which of these new directions will survive the process of creative 
destruction. This process has already started with the development of scale-invariant 
growth models that offer new insights in the fields of public policy, macroeconomics, 
international economics and economic development. Space limitations do not allow the 
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survey of this rapidly expanding strand of growth literature, and therefore we have to 
classify this important task as a direction for future research in the field of Schumpeterian 
economics. 
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	Earlier models of Schumpeterian growth generate endogenous long-run growth by adopting two basic assumptions. First, they assume that the labor force is constant over time, i.e., gL = 0, and thus L(t) = L0 in equations (4) and (5). Second, they typically assume that the R&D difficulty is a constant parameter, i.e., X(t) = X0.  These two assumptions imply that X(t)/L(t) = X0 /L0 is constant over time and therefore equations (4) and (5) hold. In addition, it is obvious from equation (4) that long-run Schumpeterian growth is bounded and that any policy that alters the level of R&D resources,                 , affects the rate of long-run growth gA. Consequently, long-run Schumpeterian growth is endogenous in these models. 

