Development of Geometry in the 19th Century

Andrew Kriehn
Table of contents

1. Leadup
2. 19th Century
3. Projective Geometry
4. Analytic Geometry
5. Non-Euclidean Geometry
6. Differential Geometry
Outline

1. Leadup
2. 19th Century
3. Projective Geometry
4. Analytic Geometry
5. Non-Euclidean Geometry
6. Differential Geometry
Descartes (1596 - 1950) and Fermat (1607 - 1665) create Analytic Geometry
- Fermat first circulated a manuscript in 1636 (based on results achieved in 1629) which Descartes used in his work in 1637.

Liebniz (1646 - 1716) and Newton (1642 - 1726) create Calculus around 1684

Desargues (1591 - 1661) is the first to systematically study Projective Geometry
- This is pretty much ignored until 1845
18th Century

- Attempts to prove the parallel postulate
 - Saccheri (1667 - 1733)
 - "The hypothesis of the acute angle is absolutely false; because it is repugnant to the nature of straight lines."
 - Lambert (1728 - 1777)
 - "Proofs of the Euclidean postulate can be developed to such an extent that apparently a mere trifle remains. But a careful analysis shows that in this seeming trifle lies the crux of the matter; usually it contains either the proposition that is being proved or a postulate equivalent to it."
18th Century

- Euler (1707 - 1783) develops Analytic Geometry to its modern form
 - Functional notation
 - Heavy use of coordinates
 - Theory of curves in general, rather than just conic sections
 - Graphical study of trigonometric functions
 - Parametric curves
 - First textbook exposition of solid analytic geometry, both algebraic and transcendental
 - Notably, quadric surfaces
Legendre (1752 - 1833):
- Worked on number theory and Calculus
 - In particular, developed elliptic integrals, beta function, and gamma function
- Also published *Elements of Geometry*, which was widely adopted as a substitute for Euclid’s *Elements*
- Includes appendices on trigonometry, including spherical trigonometry
- Saccheri-Legendre theorem: In neutral geometry, the sum of angles in a triangle is less than two right angles.
- Any geometry satisfying this property is called "Legendrian"
Monge (1746 - 1818):
- Father of Descriptive Geometry
- Developed and systematized solid Analytic Geometry and elementary Differential Geometry
- Established the École Polytechnique
 - Served as both an administrator and a teacher
- Wrote textbooks for the reformation of the mathematics curriculum
- Pupils went on to write many more textbooks in Analytic Geometry
Carnot (1753 - 1823):
- Also worked to establish the École Polytechnique, though he never taught
- Alongside Monge as a founder of modern pure Geometry
- Wrote three important works in Geometry:
 - *De la Correlation des Figures de Géométrie*
 - *Géométrie de Position*
 - *Essai sur la Théorie des Transversals*
Outline

1. Leadup
2. 19th Century
3. Projective Geometry
4. Analytic Geometry
5. Non-Euclidean Geometry
6. Differential Geometry
The Golden Age of Mathematics

- Introduction of:
 - Non-Euclidean geometries
 - N-dimensional spaces
 - Noncommutative algebras
 - Infinite processes
Outline

1. Leadup
2. 19th Century
3. Projective Geometry
4. Analytic Geometry
5. Non-Euclidean Geometry
6. Differential Geometry
Definition

- First studied during investigations of perspective
- Desargues and Kepler (independently) introduced the idea of a point at infinity.
- Projective Geometry is the study of geometric properties that are invariant with respect to projective transformations
 - I.e., bijections that map straight lines to straight lines
Poncelet

- Lived 1788 - 1867
- Entered the army corps of engineers in time for the 1812 campaign
- Taken prisoner and wrote *Applications d’Analyse et de Géométrie* while in prison
 - Wasn’t published until 1862, despite being meant as a predecessor to his next work
- Wrote his more celebrated, synthetic work, *Traité des propriétés projectives des figures* in 1822
- Sought to make Synthetic Geometry as general as possible
Poncelet

- Promoted a "Principle of Continuity"

 "The metric properties discovered for a primitive figure remain applicable, without other modifications than those of change of sign, to all correlative figures which can be considered to spring from the first."

- Carried this principle to points at infinity (which he called "ideal points")

 2 lines now always intersect at one point, either real or ideal

- Carried it further to "imaginary" points

 Hence a circle and a line always intersect, whether at real or imaginary points

- Proved that 2 circles always meet at a certain 2 imaginary ideal points
Chasles

- Lived 1793 - 1880
- Studied at the École Polytechnique and was appointed as a professor there in 1841
- Rediscovered Desargues in 1845
- Emphasized the role of cross ratios of collinear points in projective geometry
- Later in life, began the study of Enumerative Geometry
Enumerative Geometry

- Branch of Algebraic Geometry that seeks to determine the number of solutions of algebraic problems by geometric interpretation.
 - 2 The number of lines meeting 4 general lines in space
 - 8 The number of circles tangent to 3 general circles (the problem of Apollonius)
 - 27 The number of lines on a smooth cubic surface (Salmon and Cayley)
 - 2875 The number of lines on a general quintic threefold
 - 3264 The number of conics tangent to 5 plane conics in general position (Chasles)
 - 609250 The number of conics on a general quintic threefold
 - 4407296 The number of conics tangent to 8 general quadric surfaces (Fulton)
 - 666841088 The number of quadric surfaces tangent to 9 given quadric surfaces in general position in 3-space (Schubert 1879)
Lived 1796 - 1863
Heavily disliked analytic methods
Remarkable for his great generality and rigor
Showed that all of Euclidean geometry can be done with a straightedge and one circle (instead of a compass)
Used the principle of point-line duality throughout as a fundamental property of Geometry
Obtained synthetic solutions to problems which, analytically, would require the Calculus of Variations
von Staudt

- Lived 1798 - 1867
- Saw Projective Geometry as having no place for distances, angles, and perpendiculars
- Instead, used the cross ratio as a fundamental measurement in Projective Geometry
- Also discovered the relation that a conic section establishes between poles and polars
 - This relation is, in some sense, more fundamental than the conic itself, and can thus be used to define the conic
Outline

1. Leadup
2. 19th Century
3. Projective Geometry
4. Analytic Geometry
5. Non-Euclidean Geometry
6. Differential Geometry
Plücker

- Lived 1801 - 1868
- Believed algebraic methods were superior to the purely geometric approach of Poncelet and Steiner
- Abbreviated notations, as Lamé did.
 - For example, the intersection of two circles is normally written
 \[x^2 + y^2 + ax + by + c = 0 \]
 \[x^2 + y^2 + dx + ey + f = 0 \]
 This becomes \(C + \mu D = 0 \).
- Used this to explain the Cramer-Euler paradox
- Was one of four discoverers of homogeneous coordinates
 - Others were Feuerbach, Möbius, and Bobillier
Consideration of $aX + bY + cZ = 0$ to establish, analytically, the duality of points and lines.

Went on to show that every curve can be regarded as having a dual origin.
Cayley and Cauchy

- **Cayley (1821 - 1895):**
 - Began ordinary Analytic Geometry of n-dimensional space (1843)
 - Extended many theorems of 3-space to theorems of 4-space

- **Cauchy (1789 - 1857):**
 - Published a paper considering analytical points and analytical lines in spaces with more than 3 dimensions
Outline

1. Leadup
2. 19th Century
3. Projective Geometry
4. Analytic Geometry
5. Non-Euclidean Geometry
6. Differential Geometry
Lobachevsky

- Lived 1793 - 1856
- First presented about the parallel postulate in 1826, but the paper is lost
- During the next few years, became convinced of the postulate’s independence
- 1829: Became the first mathematician to publish a geometry based on the denial of the parallel postulate
- Called this new geometry "imaginary geometry"
- Published 3 more full accounts over the next two decades
 - 1835: *New Foundations of Geometry*
 - 1840: *Geometrical Investigations on the Theory of Parallels*
 - 1855: *Pangeometry*
Bolyai

- Farkas Bolyai was friends with Gauss from a young age
- Both picked up an interest in the parallel postulate
- Gauss decided it was a consistent geometry, but never published anything
- Bolyai proved many theorems in Hyperbolic Geometry, but was always trying to reach a contradiction
- His son, Janos Bolyai (1802 - 1860), picked up the task from him
 - Published in an appendix to Farkas’ work
 - Gauss approved, but never gave his support in print
 - Lack of support and Lobachevsky’s publication in 1840 left him discouraged, so he never published again.
Gauss

- Lived 1777 - 1855
- 1827: Initiated the study of Differential Geometry
 - The study of Geometry ”in the small”
- Defined what would be called Gaussian curvature
- Used Euler’s parametric equations of a surface to discover properties of curves drawn on the surface
- Looked at arc lengths, coordinates, and invariants under transformations
Riemann

- Lived 1826 - 1866
- 1854: Delivered a lecture, ”On the Hypotheses which Lie at the Foundation of Geometry”
- Urged a global view of Geometry as a study of manifolds with any number of dimensions in any kind of space
- Should not deal with lines, points, or spaces, but rather sets of n-tuples that follow certain rules
- In particular, how one finds infinitesimal distance
- Used it to give a formula for the Gaussian curvature of a surface
Riemann showed that a certain Geometry ("Riemannian Geometry") could be modeled on the surface of a sphere.

Beltrami (1835 - 1900) likewise showed that Hyperbolic Geometry could be modeled on the surface of a pseudosphere.
Klein

- Lived 1849 - 1925
- Taken in by group theory, created the Erlanger Program to classify geometries via Algebra
- Correlates Geometry as the study of invariants under certain transformations with the groups of those transformations
Algebraic Geometry

- Probably don’t have time for this