The Ancient and Medieval: China and India

Douglas Pfeffer
Table of contents

1. China
2. India
Outline

1. China
2. India
Civilizations along the Yangtze and Huanghe (or Yellow) rivers are comparable in age to those of the Nile and Tigris/Euphrates.
Civilizations along the Yangtze and Huanghe (or Yellow) rivers are comparable in age to those of the Nile and Tigris/Euphrates.

Unfortunately, however, far fewer mathematical texts have survived.
Civilizations along the Yangtze and Huanghe (or Yellow) rivers are comparable in age to those of the Nile and Tigris/Euphrates

- Unfortunately, however, far fewer mathematical texts have survived
- The majority of what we have are not original texts, but replicas
 - The oldest text we currently have is the Zhoubi Suanjing (Chou Pei Suan Ching)
Zhoubi Suanjing

The oldest of the mathematical classics, it is estimated to be from 1200 BCE or 100 BCE. Modern scholars put it to be written a little after 300 BCE near the Han dynasty (202 BCE).

Concerns astronomical calculations, the Pythagorean theorem, and fractions.

Written in the form of a dialog between a prince and his minister regarding the calendar.
Zhoubi Suanjing

- The oldest of the mathematical classics, it is estimated to be from 1200 BCE or 100 BCE
Zhoubi Suanjing

- The oldest of the mathematical classics, it is estimated to be from 1200 BCE or 100 BCE
- Modern scholars put it to be written a little after 300 BCE near the Han dynasty (202 BCE)
Zhoubi Suanjing

- The oldest of the mathematical classics, it is estimated to be from 1200 BCE or 100 BCE
 - Modern scholars put it to be written a little after 300 BCE near the Han dynasty (202 BCE)
 - Concerns astronomical calculations, the Pythagorean theorem, and fractions
The oldest of the mathematical classics, it is estimated to be from 1200 BCE or 100 BCE

- Modern scholars put it to be written a little after 300 BCE near the Han dynasty (202 BCE)
- Concerns astronomical calculations, the Pythagorean theorem, and fractions
- Written in the form of a dialog between a prince and his minister regarding the calendar
Zhoubi Suanjing

Its demonstration of the Pythagorean theorem
The Nine Chapters

Jiuzhang Suanshu (or Nine Chapters on the Mathematical Arts)

Douglas Pfeffer
The Ancient and Medieval: China and India
The Nine Chapters

Jiuzhang Suanshu (or Nine Chapters on the Mathematical Arts)
The Nine Chapters

- The most influential of all ancient Chinese texts – penned around the beginning of the common era
The Nine Chapters

- The most influential of all ancient Chinese texts – penned around the beginning of the common era
- Contained 246 problems on surveying, agriculture, engineering, taxation, calculation, the solutions of equations, and properties of right triangles
The Nine Chapters

- The most influential of all ancient Chinese texts – penned around the beginning of the common era
- Contained 246 problems on surveying, agriculture, engineering, taxation, calculation, the solutions of equations, and properties of right triangles
- Similar in style to the Babylonian ‘problem sets’, very unlike the contemporary Greek systematically expository treatises
The Nine Chapters

- The most influential of all ancient Chinese texts – penned around the beginning of the common era
 - Contained 246 problems on surveying, agriculture, engineering, taxation, calculation, the solutions of equations, and properties of right triangles
 - Similar in style to the Babylonian ‘problem sets’, very unlike the contemporary Greek systematically expository treatises
 - Chapter 8 tackled simultaneous linear equations considering solutions that were both positive and negative
The Nine Chapters

The most influential of all ancient Chinese texts – penned around the beginning of the common era

- Contained 246 problems on surveying, agriculture, engineering, taxation, calculation, the solutions of equations, and properties of right triangles
 - Similar in style to the Babylonian ‘problem sets’, very unlike the contemporary Greek systematically expository treatises
- Chapter 8 tackled simultaneous linear equations considering solutions that were both positive and negative
 - The final problem was one considering 4 equations and 5 unknowns
The Nine Chapters

- The Chinese were very fond of patterns.
The Chinese were very fond of patterns.

The very first recorded Magic Square is found in this treatise:

```
 2  7  6  15
 9  5  1  15
 4  3  8  15
15 15 15 15
```

Reportedly, this square was brought to man by a turtle from the River Luo in the days of the legendary Emperor Yii.

Fun fact: This is the smallest (and unique up to rotation and reflection) non-trivial case of a magic square, measuring 3 x 3.
The Chinese were very fond of patterns.

The very first recorded Magic Square is found in this treatise:

Reportedly, this square was brought to man by a turtle from the River Luo in the days of the legendary Emperor Yii.
The Chinese were very fond of patterns.

The very first recorded Magic Square is found in this treatise:

\[
\begin{array}{ccc}
2 & 7 & 6 \\
9 & 5 & 1 \\
4 & 3 & 8 \\
\end{array}
\]

Reportedly, this square was brought to man by a turtle from the River Luo in the days of the legendary Emperor Yii

Fun fact: This is the smallest (and unique up to rotation and reflection) non-trivial case of a magic square, measuring 3×3
Additionally, it seemed to suggest early matrix computations.
Additionally, it seemed to suggest early matrix computations. In solving the system:

\[
\begin{align*}
3x + 2y + z &= 39 \\
2x + 3y + z &= 34 \\
x + 2y + 3z &= 26
\end{align*}
\]
Additionally, it seemed to suggest early matrix computations. In solving the system:

\[
\begin{align*}
3x + 2y + z &= 39 \\
2x + 3y + z &= 34 \\
x + 2y + 3z &= 26
\end{align*}
\]

It started by drafting up the following grid:

\[
\begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 2 \\
3 & 1 & 1 \\
26 & 34 & 39
\end{pmatrix}
\]
The Nine Chapters

Through tedious descriptions:

\[
\begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & 2 \\
3 & 1 & 1 \\
26 & 34 & 39
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0 & 0 & 3 \\
0 & 5 & 2 \\
36 & 1 & 1 \\
99 & 24 & 39
\end{bmatrix}
\]

They finished the problem by back solving the equations
36z = 99, 5y + z = 24, and 3x + 2y + z = 39.
The Nine Chapters

Through tedious descriptions:

\[
\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 2 \\
3 & 1 & 1 \\
26 & 34 & 39 \\
\end{array}
\rightarrow
\begin{array}{ccc}
0 & 0 & 3 \\
0 & 5 & 2 \\
36 & 1 & 1 \\
99 & 24 & 39 \\
\end{array}
\]

They finished the problem by back solving the equations
\[36z = 99, \quad 5y + z = 24, \quad \text{and} \quad 3x + 2y + z = 39.\]
Through tedious descriptions:

\[
\begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & 2 \\
3 & 1 & 1 \\
26 & 34 & 39
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0 & 0 & 3 \\
0 & 5 & 2 \\
36 & 1 & 1 \\
99 & 24 & 39
\end{bmatrix}
\]

They finished the problem by back solving the equations

\[36z = 99, \ 5y + z = 24, \ \text{and} \ 3x + 2y + z = 39.\]
Chinese numeration essentially consisted of two systems: the first (and less popular) was ‘multiplicative’. It had ciphers for 1−10 and then for powers of 10.

\[678 = 6 \times 10^2 + 7 \times 10^1 + 8 \times 10^0\]

The second (and more popular) was the so-called Rod Numerals. This system was positional and had ciphers for 1−9 and multiples of 10 up to 90. Numbers, as in the first system, were read in pairs.
Chinese numeration essentially consisted of two systems:
Chinese numeration essentially consisted of two systems:

- The first (and less popular) was ‘multiplicative’: It had ciphers for 1 – 10 and then for powers of 10.
 - $678 = 61007108$
Chinese numeration essentially consisted of two systems:

- The first (and less popular) was ‘multiplicative’: It had ciphers for 1 – 10 and then for powers of 10.
 - 678 = 61007108
- The second (and more popular) was the so-called Rod Numerals
 - This system was positional and had ciphers for 1 – 9 and multiples of 10 up to 90
 - Numbers, as in the first system, were read in pairs.
Rod Numerals

- Ex: 56, 789
Rod Numerals

- Ex: 56, 789
- As in Babylonia, the ‘empty position’ came later with a round O symbol
 - In a 1247 CE text the value 1,405,536 is given:
Rod Numerals

- Ex: 56, 789
- As in Babylonia, the ‘empty position’ came later with a round O symbol
 - In a 1247 CE text the value 1,405,536 is given:
- This was the most common system and, since it was centesimal, was useful for computation.
The Abacus

Rod numerals weren’t just a notation for computation: Actual bamboo rods were carried about in a bag by administrators and used as calculation devices on ‘counting boards’.

So dexterous were these counters that an 11th century writer described them as “flying so quickly that the eye could not follow their movement.”

These counting boards anticipated the abacus, which are relatively new (c. 1500s), but the concept dates back to the 500s.
The Abacus

- Rod numerals weren’t just a notation for computation: Actual bamboo rods were carried about in a bag by administrators and used as calculation devices on ‘counting boards’
 - So dexterous were these counters that an 11th century writer described them as “flying so quickly that the eye could not follow their movement.”
Rod numerals weren’t just a notation for computation: Actual bamboo rods were carried about in a bag by administrators and used as calculation devices on ‘counting boards’

- So dexterous were these counters that an 11th century writer described them as “flying so quickly that the eye could not follow their movement.”

These counting boards anticipated the abacus

- The modern abacus are relatively new (c. 1500s), but the concept dates back to the 500s
The Chinese Remainder Theorem appears in the 3rd-century book *Sunzi Suanjing* by Sunzi. The problem stated is:

"There are certain things whose number is unknown. If we count them by threes, we have two left over; by fives, we have three left over; and by sevens, two are left over. How many things are there?"

Sunzi's work contains neither a proof nor a full algorithm. Much later, algorithms would be developed by Indian mathematicians Aryabhata (6th century) and Brahmagupta (7th century), and in Fibonacci's *Liber Abaci* (1202).
The earliest known statement of the theorem appears in the 3rd-century book *Sunzi Suanjing* by Sunzi:

“There are certain things whose number is unknown. If we count them by threes, we have two left over; by fives, we have three left over; and by sevens, two are left over. How many things are there?”
Chinese Remainder Theorem

- The earliest known statement of the theorem appears in the 3rd-century book *Sunzi Suanjing* by Sunzi:
 - “There are certain things whose number is unknown. If we count them by threes, we have two left over; by fives, we have three left over; and by sevens, two are left over. How many things are there?”

- Sunzi’s work contains neither a proof nor a full algorithm.
The earliest known statement of the theorem appears in the 3rd-century book *Sunzi Suanjing* by Sunzi:

- “There are certain things whose number is unknown. If we count them by threes, we have two left over; by fives, we have three left over; and by sevens, two are left over. How many things are there?”

- Sunzi’s work contains neither a proof nor a full algorithm.

- Much later, algorithms would be developed by Indian mathematicians Aryabhata (6th century) and Brahmagupta (7th century), and in Fibonacci’s *Liber Abaci* (1202)
Early Chinese works used various approximations for π:

3, 3.1547, $\sqrt{10}$, $\frac{22}{7}$, $\frac{142}{45}$

In 200 CE, Liu Hui reworked the *Nine Chapters* and, using a 96-gon, achieved $\pi \approx 3.14$. Then used a 3072-gon to get $\pi \approx 3.14159$

Of interest is that Liu Hui also, much as the Babylonians had much earlier, correctly calculated the volume of the frustrum of a right-pyramid. Oddly enough, when he tackled the frustrum of a cone, he just used $\pi = 3$.

Douglas Pfeffer

The Ancient and Medieval: China and India
Early Chinese works used various approximations for π:
$3, 3.1547, \sqrt{10}, \frac{92}{29}, \frac{142}{45}$
Early Chinese works used various approximations for π:

- 3, 3.1547, $\sqrt{10}$, $\frac{92}{29}$, $\frac{142}{45}$

- In 200 CE, Liu Hui reworked the *Nine Chapters* and, using a 96-gon, achieved $\pi \approx 3.14$. Then used a 3072-gon to get $\pi \approx 3.14159$
Early Chinese works used various approximations for π:

3, 3.1547, $\sqrt{10}$, $\frac{92}{29}$, $\frac{142}{45}$

- In 200 CE, Liu Hui reworked the *Nine Chapters* and, using a 96-gon, achieved $\pi \approx 3.14$. Then used a 3072-gon to get $\pi \approx 3.14159$

- Of interest is that Liu Hui also, much as the Babylonians had much earlier, correctly calculated the volume of the frustrum of a right-pyramid
Early Chinese works used various approximations for \(\pi \):

\[3, 3.1547, \sqrt{10}, \frac{92}{29}, \frac{142}{45} \]

- In 200 CE, Liu Hui reworked the *Nine Chapters* and, using a 96-gon, achieved \(\pi \approx 3.14 \). Then used a 3072-gon to get \(\pi \approx 3.14159 \)

- Of interest is that Liu Hui also, much as the Babylonians had much earlier, correctly calculated the volume of the frustrum of a right-pyramid
 - Oddly enough, when he tackled the frustrum of a cone, he just used \(\pi = 3 \).
The 400s saw the rise of mathematician Zu Chongzhi.
The 400s saw the rise of mathematician Zu Chongzhi. He achieved: \(\pi \approx \frac{355}{113} \approx 3.14159292 \).

This approximation was not matched until the 1400s. How Changzhi achieved this approximation is not known.
From the 6th to the 10th century, a group of a dozen ‘classics’ served as the foundation for mathematics taught in the “School for the Sons of the State”

- Primarily arithmetic and number theory
- Includes the Zhoughbi, Nine Chapters, and Liu Hui’s works
From the 6th to the 10th century, a group of a dozen ‘classics’ served as the foundation for mathematics taught in the “School for the Sons of the State”

- Primarily arithmetic and number theory
- Includes the Zhoughbi, Nine Chapters, and Liu Hui’s works

From the 10th to the 13th centuries, no new mathematical breakthroughs seem to have occurred

- This is interesting since these centuries saw the invention of paper, the compass, and gunpowder
As the Sung dynasty ended, China saw the Mongol expansion and increased contact with Islam. Li Zhi of Peking (Beijing) was a hermit, scholar, and academician. He wrote *Ceyuan Haijing* (Sea-Mirror of the Circle Measurements), which contained 170 problems about circles inscribed within (or circumscribed without) a right triangle and determining the relationships between the sides and the radii.
13th Century

- As the Sung dynasty ended, China saw the Mongol expansion and increased contact with Islam
As the Sung dynasty ended, China saw the Mongol expansion and increased contact with Islam.

Li Zhi of Peking (Beijing) was a hermit, scholar, and acamedician.
As the Sung dynasty ended, China saw the Mongol expansion and increased contact with Islam.

Li Zhi of Peking (Beijing) was a hermit, scholar, and academician.

- He wrote *Ceyuan Haijing* (Sea-Mirror of the Circle Measurements).
As the Sung dynasty ended, China saw the Mongol expansion and increased contact with Islam.

Li Zhi of Peking (Beijing) was a hermit, scholar, and academician.

- He wrote *Ceyuan Haijing* (*Sea-Mirror of the Circle Measurements*).
- Contained 170 problems about circles inscribed within (or circumscribed without) a right triangle and determining the relationships between the sides and the radii.
Yang Hui was a prolific arithmetician. Among his achievements are advancements on:
Yang Hui was a prolific arithmetician. Among his achievements are advancements on:

- Magic Squares of order > 3
Yang Hui was a prolific arithmetician. Among his achievements are advancements on:

- Magic Squares of order \(> 3 \)
- Summation of Series
Yang Hui was a prolific arithmetician. Among his achievements are advancements on:
- Magic Squares of order \(> 3 \)
- Summation of Series
- Binomial coefficients (Pascals Triangle)
Yang Hui was a prolific arithmetician. Among his achievements are advancements on:

- Magic Squares of order \(> 3 \)
- Summation of Series
- Binomial coefficients (Pascals Triangle)

Of interest, however, is that these last two contributions are seldom attributed to Hui. Similar results were published in the more popular text *Precious Mirror* by Zhu Shiji.
Zhu Shiji was the last and greatest of the Sung mathematicians
Zhu Shiji was the last and greatest of the Sung mathematicians.
- Lived near Peking and eventually wandered China for 20 years teaching math.
Zhu Shiji was the last and greatest of the Sung mathematicians

- Lived near Peking and eventually wandered China for 20 years teaching math
- In 1299, he wrote *Suanxue qimeng* (*Introduction to Mathematical Studies*)
 - An elementary work that heavily influenced Korea and Japan
 - Was lost until a replica was found in the 1800s
Zhu Shiji

- Zhu Shiji was the last and greatest of the Sung mathematicians
 - Lived near Peking and eventually wandered China for 20 years teaching math
 - In 1299, he wrote *Suanxue qimeng (Introduction to Mathematical Studies)*
 - An elementary work that heavily influenced Korea and Japan
 - Was lost until a replica was found in the 1800s
 - In 1303, he wrote *Siyuan yujian (Jade Mirror of the Four Origins)*
 - The four origins were heaven, earth, man, and matter. They represented the four unknown quantities in a given equation.
In this work we find the pinnacle of Chinese algebra – considering equations with degrees as high as 14.
In this work we find the pinnacle of Chinese algebra – considering equations with degrees as high as 14.

Also included a study of series:

\[1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{3!} \]
In this work we find the pinnacle of Chinese algebra – considering equations with degrees as high as 14

Also included a study of series:

\[1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{3!} \]

\[1 + 8 + 30 + 80 + \ldots + \frac{n^2(n+1)(n+2)}{3!} = \frac{n(n+1)(n+2)(n+3)(4n+1)}{5!} \]
Jade Mirror of the Four Origins

- In this work we find the pinnacle of Chinese algebra – considering equations with degrees as high as 14
- Also included a study of series:
 - $1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{3!}$
 - $1 + 8 + 30 + 80 + \ldots + \frac{n^2(n+1)(n+2)}{3!} = \frac{n(n+1)(n+2)(n+3)(4n+1)}{5!}$
- No proofs are given for formulas like these and, interestingly, the subject died until that 1800s in China
In this work we find the pinnacle of Chinese algebra – considering equations with degrees as high as 14

Also included a study of series:

- $1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{3!}$
- $1 + 8 + 30 + 80 + \ldots + \frac{n^2(n+1)(n+2)}{3!} = \frac{n(n+1)(n+2)(n+3)(4n+1)}{5!}$

- No proofs are given for formulas like these and, interestingly, the subject died until that 1800s in China

Also included a systematic study of binomial coefficients and exhibited what is now mistakenly attributed to Blaise Pascal (1600s)

- Featured Rod Numerals with the empty position O
- Zhu himself claims the triangle is ‘known’ and ‘old’ and, notably, not his discovery
Chinese ‘Pascals Triangle’
Closing on the Chinese scene

After the 13th century, mathematics in China declined back into commercial arithmetic and routine study of the Nine Chapters. We now turn our eyes westward toward the Indian subcontinent...

Douglas Pfeffer

The Ancient and Medieval: China and India
After the 13th century, mathematics in China declined back into commercial arithmetic and routine study of the *Nine Chapters*.
Closing on the Chinese scene

- After the 13th century, mathematics in China declined back into commercial arithmetic and routine study of the *Nine Chapters*

- We now turn our eyes westward toward the Indian subcontinent...
Outline

1. China

2. India
Archaeological excavations at Mohenjo Daro and Harappa give evidence to an old and highly cultured civilization in the Indus Valley around 2650 BCE.

Unfortunately, no mathematical documents.
Archaeological excavations at Mohenjo Daro and Harappa give evidence to an old and highly cultured civilization in the Indus Valley around 2650 BCE.

Unfortunately, no mathematical documents.

The area, however, was volatile through movement and conquest. Even Indian languages were not entirely uniform.
Archaeological excavations at Mohenjo Daro and Harappa give evidence to an old and highly cultured civilization in the Indus Valley around 2650 BCE

- Unfortunately, no mathematical documents

The area, however, was volatile through movement and conquest. Even Indian languages were not entirely uniform.

- The Vedas, a group of ancient religious texts, do give detailed building prescriptions for altars and the like
 - These prescriptions came in the form of the *Sulbasutras* or “rules of the chord”
 - Eerily similar to Egyptian geometry (though few scholars support a strong connection to Egypt due to a lack of continuity in Indian mathematics)
Sulbasutras

- Written by many authors (all in verse) as early as 1000 BCE
- Contains, in part, of Pythagorean triples (although there is little concrete evidence of Mesopotamian influence)
Sulbasutras

- Written by many authors (all in verse) as early as 1000 BCE
 - Contains, in part, of Pythagorean triples (although there is little concrete evidence of Mesopotamian influence)
- One such author, Apastamba, gave a number of geometric arguments
 - For example, a construction on how to, given a rectangle, draft up a square with the same area
Aryabhata
In 499 CE, Aryabhata wrote *Aryabhatiya*, a text on astronomy and mathematics.
In 499 CE, Aryabhata wrote *Aryabhatiya*, a text on astronomy and mathematics

- Written entirely in verse
- Although the names of Indian mathematicians exist before him, none of their work survived
In 499 CE, Aryabhata wrote *Aryabhatiya*, a text on astronomy and mathematics

- Written entirely in verse
- Although the names of Indian mathematicians exist before him, none of their work survived
 - *Aryabhatiya*, much like Euclid's *Elements*, was a summary of earlier developments compiled by a single author
 - Unlike *Elements*, however, *Aryabhatiya* exhibited no deductive methodology
The mathematics portion opened with the powers of 10 and rules on obtaining the square and cube roots of integers
Aryabhatiya

- The mathematics portion opened with the powers of 10 and rules on obtaining the square and cube roots of integers
- It contained a mixed bag of correct and incorrect results:
 - Area of a triangle = half the product of the base and the altitude (correct)
The mathematics portion opened with the powers of 10 and rules on obtaining the square and cube roots of integers.

It contained a mixed bag of correct and incorrect results:

- Area of a triangle = half the product of the base and the altitude (correct)
- Volume of a pyramid = half of the product of the base and the altitude (incorrect)
Aryabhatiya

- The mathematics portion opened with the powers of 10 and rules on obtaining the square and cube roots of integers.
- It contained a mixed bag of correct and incorrect results:
 - Area of a triangle = half the product of the base and the altitude (correct)
 - Volume of a pyramid = half of the product of the base and the altitude (incorrect)
- Other examples include:
 - area of a circle vs. the volume of a sphere
The mathematics portion opened with the powers of 10 and rules on obtaining the square and cube roots of integers.

It contained a mixed bag of correct and incorrect results:
- Area of a triangle = half the product of the base and the altitude (correct)
- Volume of a pyramid = half of the product of the base and the altitude (incorrect)

Other examples include:
- area of a circle vs. the volume of a sphere
- area of a trapezoid vs. area of an arbitrary plane figure
At one point, Aryabhata writes:

“Add 4 to 100, multiply by 8, and add 62,000. The result is approximately the circumference of a circle of which the diameter is 20,000”
At one point, Aryabhata writes:

“Add 4 to 100, multiply by 8, and add 62,000. The result is approximately the circumference of a circle of which the diameter is 20,000”

By this estimate, $\pi \approx 3.1416$

Some scholars use this to argue the successes found within the *Aryabhatiya*
At one point, Aryabhata writes:

“Add 4 to 100, multiply by 8, and add 62,000. The result is approximately the circumference of a circle of which the diameter is 20,000”

By this estimate, $\pi \approx 3.1416$

Some scholars use this to argue the successes found within the *Aryabhatiya*

However, it should be noted that Ptolemy had a similar approximation 400 years prior.
At one point, Aryabhata writes:

“Add 4 to 100, multiply by 8, and add 62,000. The result is approximately the circumference of a circle of which the diameter is 20,000”

By this estimate, \(\pi \approx 3.1416 \)

Some scholars use this to argue the successes found within the *Aryabhatiya*

However, it should be noted that Ptolemy had a similar approximation 400 years prior

The fact that Aryabhata may have been influenced by the Greeks is further supported by his adoption of the myriad as a unit length in geometry
Oftentimes Aryabhata wrote in colorful prose.
Oftentimes Aryabhata wrote in colorful prose.

For example, when solving the equation \(\frac{a}{b} = \frac{c}{x} \) for \(x \) (supposing \(a, b, \) and \(c \) are known), he writes:

- “In the rule of three multiply the fruit by the desire and divide by the measure. The result will be the fruit of the desire.”
Aryabhatiya

- Oftentimes Aryabhata wrote in colorful prose.
- For example, when solving the equation \(\frac{a}{b} = \frac{c}{x} \) for \(x \) (supposing \(a, b, \) and \(c \) are known), he writes:
 - “In the rule of three multiply the fruit by the desire and divide by the measure. The result will be the fruit of the desire.”
- Here,
 - \(a = \) ‘measure’,
 - \(b = \) ‘fruit’,
 - \(c = \) ‘desire’, and
 - \(x = \) ‘fruit of the desire’
Indian mathematicians seemed to be influenced little by Greek geometry – they focused mainly on numbers.
Multiplication

- Indian mathematicians seemed to be influenced little by Greek geometry – they focused mainly on numbers.
- Addition and multiplication were carried out similar to modern day, but written right-to-left.
Indian mathematicians seemed to be influenced little by Greek geometry – they focused mainly on numbers.

Addition and multiplication were carried out similar to modern day, but written right-to-left.

- They did invent lattice multiplication:
 - Example: 456×34
Indian mathematicians seemed to be influenced little by Greek geometry – they focused mainly on numbers.

Addition and multiplication were carried out similar to modern day, but written right-to-left.

- They did invent lattice multiplication:
 - Example: 456×34

This method was hypothesized to be formulated c. 12th century in India and then disseminated to China and Arabia and from Arabia to Italy in the 14th and 15th centuries.
Brahmagupta
Brahmagupta
Lived in 7th century in Central India (about a century after Aryabhata)
Brahmagupta

- Lived in 7th century in Central India (about a century after Aryabhata)
 - In his works, he mentions two values for π
 - Practical value: $\pi \approx 3$
 - Neat value: $\pi \approx \sqrt{10}$

Notably, no mention to Aryabhata’s estimate – suggesting little inheritance.

Best known work was Brahmasphuta Siddhanta.

Much like Aryabhatiya, it contained a mixture of correct and incorrect results.
Lived in 7th century in Central India (about a century after Aryabhata)

- In his works, he mentions two values for π
 - The ‘practical value’ $\pi \approx 3$
 - The ‘neat value’ $\pi \approx \sqrt{10}$
Brahmagupta

- Lived in 7th century in Central India (about a century after Aryabhata)
 - In his works, he mentions two values for π
 - The ‘practical value’ $\pi \approx 3$
 - The ‘neat value’ $\pi \approx \sqrt{10}$
 - Notably, no mention to Aryabhata’s estimate – suggesting little inheritance
Brahmagupta

- Lived in 7th century in Central India (about a century after Aryabhata)
 - In his works, he mentions two values for π
 - The ‘practical value’ $\pi \approx 3$
 - The ‘neat value’ $\pi \approx \sqrt{10}$
 - Notably, no mention to Aryabhata’s estimate – suggesting little inheritance
 - Best known work was *Brahmasphuta Siddhanta*
 - Much like *Aryabhatiya*, it contained a mixture of correct and incorrect results
Brahmasphuta Siddhanta

- Brahmagupta systematized the arithmetic of negative numbers and the value zero
Brahmasphuta Siddhanta

- Brahmagupta systematized the arithmetic of negative numbers and the value zero
 - Greeks knew how to subtract via geometric magnitudes, but Brahmagupta formalized these into numerical rules for positive and negative numbers
 - Greeks, likewise, had a concept of ‘nothingness’, but they never made it into a genuine number
Brahmagupta systematized the arithmetic of negative numbers and the value zero

- Greeks knew how to subtract via geometric magnitudes, but Brahmagupta formalized these into numerical rules for positive and negative numbers
- Greeks, likewise, had a concept of ‘nothingness’, but they never made it into a genuine number

On the matter of zero, Brahmagupta seemed to have made a false start:

- He argued that \(\frac{0}{0} = 0 \), but on \(\frac{a}{0} \) for \(a \neq 0 \), he avoided it...
- “Positive divided by positive, or negative by negative, is affirmative. Cipher divided by cipher is naught. Positive divided by negative is negative. Negative divided by affirmative is negative. Positive or negative divided by cipher is a fraction with that for denominator”
Brahmagupta was apparently the first to provide a general solution to the linear Diophantine equation $ax + by = c$ where $a, b, c \in \mathbb{Z}$. He also suggested the quadratic Diophantine equation $x^2 = 1 + py^2$. This equation is often (mistakenly) attributed to the 1600s mathematician John Pell – the so-called Pell's equation. Special cases of Pell's equation were solved by the next prominent Indian mathematician Bhaskara in c. 1100.
Brahmagupta was apparently the first to provide a *general* solution to the linear Diophantine equation $ax + by = c$ where $a, b, c \in \mathbb{Z}$.
Brahmagupta was apparently the first to provide a general solution to the linear Diophantine equation $ax + by = c$ where $a, b, c \in \mathbb{Z}$.

He also suggested the quadratic Diophantine equation $x^2 = 1 + py^2$.
Brahmagupta was apparently the first to provide a *general* solution to the linear Diophantine equation \(ax + by = c \) where \(a, b, c \in \mathbb{Z} \).

He also suggested the quadratic Diophantine equation \(x^2 = 1 + py^2 \):

- This equation is often (mistakenly) attributed to the 1600s mathematician John Pell – the so-called *Pells equation*.

Indeterminate Equations
Brahmagupta was apparently the first to provide a general solution to the linear Diophantine equation $ax + by = c$ where $a, b, c \in \mathbb{Z}$.

He also suggested the quadratic Diophantine equation $x^2 = 1 + py^2$.

- This equation is often (mistakenly) attributed to the 1600s mathematician John Pell – the so-called *Pells equation*.
- Special cases of Pells equation was solved by the next prominent Indian mathematician Bhaskara in c. 1100.
Bhaskara improved on other aspects of Brahmagupta's work as well. In addressing the a_0 for $a \neq 0$ debacle, he writes:

"Statement: Dividend 3. Divisor 0. Quotient the fraction $3/0$. This fraction of which the denominator is cipher, is termed an infinite quantity. In this quantity consisting of that which has cipher for a divisor, there is no alteration, though many be inserted or extracted; as no change takes place in the infinite and immutable God."

He goes on, however, to note that $a_0 \cdot 0 = a$, so a full understanding had yet to be achieved.
Bhaskara improved on other aspects of Brahmagupta’s work as well.
Bhaskara improved on other aspects of Brahmagupta’s work as well.

In addressing the $\frac{a}{0}$ for $a \neq 0$ debacle, he writes:

“Statement: Dividend 3. Divisor 0. Quotient the fraction 3/0. This fraction of which the denominator is cipher, is termed an infinite quantity. In this quantity consisting of that which has cipher for a divisor, there is no alteration, though many be inserted or extracted; as no change takes place in the infinite and immutable God.”
Bhaskara

- Bhaskara improved on other aspects of Brahmagupta's work as well.
- In addressing the $\frac{a}{0}$ for $a \neq 0$ debacle, he writes:
 - "Statement: Dividend 3. Divisor 0. Quotient the fraction 3/0. This fraction of which the denominator is cipher, is termed an infinite quantity. In this quantity consisting of that which has cipher for a divisor, there is no alteration, though many be inserted or extracted; as no change takes place in the infinite and immutable God."

He goes on, however, to note that $\frac{a}{0} \cdot 0 = a$, so a full understanding had yet to be achieved.
His major work was the *Lilavata*
His major work was the *Lilavata*

This was one of the last significant texts in medieval Indian mathematics
His major work was the *Lilavata*

This was one of the last significant texts in medieval Indian mathematics

In this text, he finds a solution for the Pells equation

\[x^2 = 1 + 61y^2 \]
Bhaskara

- His major work was the *Lilavata*
- This was one of the last significant texts in medieval Indian mathematics
- In this text, he finds a solution for the Pells equation $x^2 = 1 + 61y^2$
 - His solution:
 - $x = 1,776,319,049$
 - $y = 22,615,390$
His major work was the *Lilavata*

This was one of the last significant texts in medieval Indian mathematics

In this text, he finds a solution for the Pells equation $x^2 = 1 + 61y^2$

- His solution:
 - $x = 1,776,319,049$
 - $y = 22,615,390$

- How he achieved this feat, no one knows...
In the late 14th century, in southwest India, the Keralese School began under the direction of Madhava. This school is most well-known for its early (and most likely original) discovery of what we would now call:

- Power series expansions for \(\sin \) and \(\cos \)
- Series for \(\pi/4 \)
- Power series for \(\arctan \)

Often attributed to Newton, Liebniz, and James Gregory. With the dawn on the Renaissance, however, the center for mathematical discoveries again began to find its way westward...
In the late 14th century, in southwest India, the Keralesse School began under the direction of Madhava.
Madhava and the Kerailese School

- In the late 14th century, in southwest India, the Kerailese School began under the direction of Madhava.
- This school is most well-known for its early (and most likely original) discovery of what we would now call:
 - Power series expansions for sin and cos (often attributed to Newton)
 - \(\frac{\pi}{4} \) (often attributed to Liebniz)
 - Power series for arctangent (often attributed to James Gregory)

With the dawn on the Renaissance, however, the center for mathematical discoveries again began to find its way westward...
In the late 14th century, in southwest India, the Kerales School began under the direction of Madhava. This school is most well-known for its early (and most likely original) discovery of what we would now call:

- Power series expansions for sin and cos
 - Often attributed to Newton

- The series for \(\frac{\pi}{4} \)
 - Often attributed to Liebniz

- Power series for arctangent
 - Often attributed to James Gregory

With the dawn of the Renaissance, however, the center for mathematical discoveries again began to find its way westward...
In the late 14th century, in southwest India, the Kerales School began under the direction of Madhava. This school is most well-known for its early (and most likely original) discovery of what we would now call:

- Power series expansions for sin and cos
 - Often attributed to Newton
- The series for $\frac{\pi}{4}$
 - Often attributed to Liebniz

With the dawn on the Renaissance, however, the center for mathematical discoveries again began to find its way westward...
In the late 14th century, in southwest India, the Kerales School began under the direction of Madhava. This school is most well-known for its early (and most likely original) discovery of what we would now call:

- Power series expansions for sin and cos
 - Often attributed to Newton
- The series for $\frac{\pi}{4}$
 - Often attributed to Liebniz
- Power series for arctangent
 - Often attributed to James Gregory

With the dawn on the Renaissance, however, the center for mathematical discoveries again began to find its way westward...
Madhava and the Kerałe School

- In the late 14th century, in southwest India, the Kerałe School began under the direction of Madhava.
- This school is most well-known for its early (and most likely original) discovery of what we would now call:
 - Power series expansions for sin and cos
 - Often attributed to Newton
 - The series for $\frac{\pi}{4}$
 - Often attributed to Liebniz
 - Power series for arctangent
 - Often attributed to James Gregory
- With the dawn on the Renaissance, however, the center for mathematical discoveries again began to find its way westward...