Lecture 22: Section 3.3 Properties of Logarithms

Properties:

$$\log_a(uv) = \log_a u + \log_a v$$

$$\log_a\left(\frac{u}{v}\right) = \log_a u - \log_a v$$

$$\log_a u^n = n \log_a u$$

Change of base formula

Recall the following properties of Logarithm:

The logarithmic function with base a

$$y = f(x) = \log_a x$$
 if and only if

- 1. Domain of f:
- $2. \log_a 1 =$
- $3. \log_a a =$
- 4. $\log_a a^x =$ for all real number x

 $a^{\log_a x} =$ for x > 0

The Natural Logarithmic Function

 $y = \ln x$ if and only if

Note the following:

ln 1 = ln e =

 $e^{\ln x} = \ln(e^x) =$

Properties of Logarithms

Let u, v and a be positive real numbers with $a \neq 1$ and n be any real number. The following properties hold:

1.
$$\log_a(uv) =$$

$$2. \log_a \left(\frac{u}{v}\right) =$$

$$3. \log_a u^n =$$

Proof:

NOTE:
$$\log_a(u+v) \neq \log_a u + \log_a v$$

 $(\log_a u)^n \neq n \log_a u$

ex. Evaluate:

1)
$$\log_4 2 + \log_4 32$$

2)
$$\log_2 80 - \log_2 5$$

3)
$$-\frac{1}{3}\log_4 8$$

ex. Rewrite and simplify if possible:

1)
$$\ln(2 + e^x)$$

$$2) \log_2(x-y)$$

$$3) \frac{\log_3 x}{\log_3 y}, \ y \neq 1$$

$$4) \ln \left(\frac{1}{\sqrt[3]{e}} \right)$$

$$5) \log_9 \left(\frac{\sqrt[4]{9}}{3} \right)$$

6)
$$2^{4\log_2 x}$$

$$7) \ln \sqrt{\frac{x^3 y}{z}}$$

ex. Rewrite and simplify:

1)
$$\ln \frac{\sqrt{x^3 e^{x-1}}}{x^2 + 1}$$

$$2) \log \sqrt{x\sqrt{y\sqrt{z}}}$$

ex. Write as a single logarithm:

1)
$$\frac{1}{2}[\ln(x-5) + \ln x] - \ln(2y)$$

2)
$$\log 2x - \log(x+1) - \frac{1}{3}\log(3x+7)$$

Change of Base Formula

Let $a \neq 1$, $b \neq 1$ and x be positive real numbers. Then

$$\log_a x = \frac{\log_b x}{\log_b a}$$

When using a calculator, we need the specific formulas:

$$\log_a x = \frac{\log x}{\log a}$$
 or $\log_a x = \frac{\ln x}{\ln a}$

NOTE:

Most calculators have both 'log' and 'ln' keys to calculate the common and natural logarithm of a number. By using the Change of Base Formula, we can

- 1. evaluate logarithms to other bases.
- 2. graph logarithms to other bases.

<u>ex.</u> Given $\log 5 \approx 0.7$, $\log 3 \approx 0.48$, $\ln 3 \approx 1.1$, and $\ln(4+e) = 1.9$, use Change of Base Formula to find:

$$1) \log_3 5$$

$$2) \log_{\sqrt{3}} \sqrt{4+e}$$

$$\underline{\mathbf{ex.}}$$
 Solve $\log_3 x = \log_9(2x - 1)$

Practice.

- 1) Write $\log_4 x + 4 \log_2 y$ as a single logarithm with base 2.
 - 2) Solve: $2\log_3 x = \log_9 16$
 - 3) Solve: $\log_2 x = \log_4 25$
 - 4) Solve: $\log_5 x = \log_{\sqrt{5}} 6$

Answer. 1)
$$\log_2 \sqrt{x} \sqrt{x} = x$$
 (5. $2 = x$ (2. $\sqrt{x} \sqrt{x} \sqrt{x} = 36$