FINAL SOLUTIONS

Spring 2024

1. Show that every map $f: S^{k+l} \rightarrow S^{k} \times S^{l}, k, l>0$, induces the trivial homomorphism of reduced cohomology groups

$$
f^{*}: \tilde{H}^{*}\left(S^{k} \times S^{l}\right) \rightarrow \tilde{H}^{*}\left(S^{k+l}\right)
$$

SOLUTION: The cohomology ring $H^{*}\left(S^{m}\right)=\mathbb{Z}[\alpha] /\left(\alpha^{2}\right)$ with $|\alpha|=$ m. Since the groups $H^{r}\left(S^{m}\right)$ are free for all r and m, the cohomology ring $H^{*}\left(S^{k} \times S^{l}\right)$ is isomorphic to $\mathbb{Z}[\alpha] /\left(\alpha^{2}\right) \otimes \mathbb{Z}[\beta] /\left(\beta^{2}\right)$. Since $k, l<$ $k+l$, we obtain $H^{k}\left(S^{k+l}\right)=0=H^{l}\left(S^{k+l}\right)$. Hence $f^{*}(\alpha)=0=f^{*}(\beta)$. Thus, f^{*} is zero homomorphism in dimensions >0.
2. Show that there is no map $f: \mathbb{C} P^{m} \rightarrow \mathbb{C} P^{n}$ with $m>n$ inducing a nontrivial homomorphism $f^{*}: H^{2}\left(\mathbb{C} P^{n}\right) \rightarrow H^{2}\left(\mathbb{C} P^{m}\right)$.

SOLUTION: Note that $H^{*}\left(\mathbb{C} P^{r}\right)=\mathbb{Z}\left[\alpha_{r}\right] /\left(\alpha_{r}^{r+1}\right)$ with $\left|\alpha_{r}\right|=2$. If $f^{*}\left(\alpha_{n}\right) \neq 0$, then $f^{*}\left(\alpha_{n}\right)=k \alpha_{m}$ with $k \neq 0$. Then we would have a contradiction:

$$
0=f^{*}\left(\alpha_{n}^{n+1}\right)=f^{*}\left(\alpha_{n}\right)^{n+1}=k^{n+1} \alpha_{m}^{n+1} \neq 0 .
$$

3. Show that $R P^{2 n+1}$ is not homotopy equivalent to $R P^{2 n} \vee S^{2 n+1}$ SOLUTION: The cohomology rings taken with \mathbb{Z}_{2} coefficients

$$
H^{*}\left(R P^{2 n+1}\right)=\mathbb{Z}_{2}[\alpha] /\left(\alpha^{2 n+2}\right)
$$

and
$H^{*}\left(R P^{2 n} \vee S^{2 n+1}\right)=H^{*}\left(R P^{2 n}\right) \oplus H^{*}\left(S^{2 n+1}\right)=\mathbb{Z}_{2}[\beta] /\left(\beta^{2 n+1}\right) \oplus \mathbb{Z}_{2}[\gamma] /\left(\gamma^{2}\right)$
are not isomorphic since the first contains an element α whose $(2 n+1)$ st power $\alpha^{2 n+1}$ is nonzero and in the second $x^{2 n+1}=0$ for all elements.
4. Let $U \subset \mathbb{R}^{n}$ be an open set. Show that the groups $H_{i}(U)$ are countable for all i.

SOLUTION: Consider the partition of \mathbb{R} into intervals $[\epsilon n, \epsilon(n+1)]$, $n \in \mathbb{Z}$ of length ϵ. It defines a CW complex structure on \mathbb{R}. An ϵ cubical n-complex is a subcomplex of \mathbb{R}^{n} with respect to the product CW structure. For an open set $U \subset \mathbb{R}^{n}$ we denote by C_{n} the union of $\frac{1}{2^{n}}$-cubes that are contained in U. Note that C_{n} is a finite CW complex, $C_{n+1} \subset C_{n}, U=\cup C_{n}$, and every compact set $X \subset U$ lies in some C_{n}.

Then $H_{i}(U)=\lim _{\rightarrow} H_{i}\left(C_{n}\right)$. Since $H_{i}\left(C_{n}\right)$ are countable, $\oplus_{n} H_{i}\left(C_{n}\right)$ is countable and, hence, $\lim _{\rightarrow} H_{i}\left(C_{n}\right)$ is countable.
5. Show that a compact manifold does not retract onto its boundary.

SOLUTION: Let M be a compact n-manifold with boundary. We consider the homology exact sequence of the pair $(M, \partial M)$ for \mathbb{Z}_{2} coefficients:

$$
H_{n}\left(M ; \mathbb{Z}_{2}\right) \rightarrow H_{n}\left(M, \partial M ; \mathbb{Z}_{2}\right) \xrightarrow{\partial} H_{n-1}\left(\partial M ; \mathbb{Z}_{2}\right) \xrightarrow{i_{*}} H_{n-1}\left(M ; \mathbb{Z}_{2}\right) \rightarrow
$$

If ∂M is a retract of M, then i_{*} is injective. Since M is \mathbb{Z}_{2} orientable, $H_{n}\left(M, \partial M ; \mathbb{Z}_{2}\right) \neq 0$. It was proven in class that every noncompact n-manifold has trivial n-homology for all coefficients. Hence $H_{n}\left(M ; \mathbb{Z}_{2}\right) \cong H_{n}\left(M \backslash \partial M ; \mathbb{Z}_{2}\right)=0$. Therefore, ∂ is nonzero homomorphism and i_{*} cannot be injective. Contradiction.
6. Show that $H_{c}^{n+1}(X \times \mathbb{R})=H_{c}^{n}(X)$ for all n.

SOLUTION: We use the fact (proven in class) that the cross product with the generator of $H^{1}(I, \partial I)$ induces an isomorphism $H^{n}(Y) \rightarrow$ $H^{n+1}(Y \times I, Y \times \partial I)$. In the case of the relative cohomology, this cross product defines an isomorphism $H^{n}(Y, A) \rightarrow H^{n+1}(Y \times I, Y \times \partial I \cup A \times$ $I)$. Then we obtain a chain of isomorphisms

$$
\begin{gathered}
H_{c}^{n+1}(X \times \mathbb{R})=\lim _{\rightarrow C \subset \text { comp } X, m \in \mathbb{N}} H^{n+1}(X \times \mathbb{R} \mid C \times[-m, m])= \\
=\lim _{\rightarrow} H^{n+1}(X \times \mathbb{R}, X \times \mathbb{R} \backslash(C \times[-m, m])= \\
(h . e .)=\lim _{\rightarrow} H^{n+1}(X \times \mathbb{R}, X \times \mathbb{R} \backslash(C \times(-m, m))= \\
(\text { excision })=\lim _{\rightarrow} H^{n+1}(X \times[-m, m], X \times[-m, m] \backslash(C \times(-m, m))= \\
=\lim _{\rightarrow} H^{n+1}(X \times[-m, m], X \times \partial[-m, m] \cup(X \backslash C \times[-m, m])= \\
(\text { cross product isomorphism })=\lim _{\rightarrow} H^{n}(X, X \backslash C)=H_{c}^{n}(X) .
\end{gathered}
$$

7. Show that the tensor product commutes with direct limits:

$$
\left(\lim _{\rightarrow} G_{\alpha}\right) \otimes A=\lim _{\rightarrow}\left(G_{\alpha} \otimes A\right) .
$$

SOLUTION: Note that the statement holds true when $A=\oplus \mathbb{Z}$. Let $F_{1} \rightarrow F_{0} \rightarrow A \rightarrow 0$ be a free resolution of A. Thus $F_{i}=\oplus \mathbb{Z}, i=0,1$, and the sequence is exact. The sequence

$$
\left(\lim _{\rightarrow} G_{\alpha}\right) \otimes F_{1} \rightarrow\left(\lim _{\rightarrow} G_{\alpha}\right) \otimes F_{2} \rightarrow\left(\lim _{\rightarrow} G_{\alpha}\right) \otimes A \rightarrow 0
$$

is exact since the tensor product is a right exact functor. For each $\alpha \leq \beta$ there is a commutative diagram:

Hence there is the limit diagram which is also commutative:

The bottom row is exact as the direct limit of exact sequences. Two left vertical arrows are isomorphism since F_{i} are free. By the Five Lemma we obtain the result.
8. Show that for orientable surfaces M_{g} and M_{h} of genus g and h with $g>h$
(a) there is no map $f: M_{h} \rightarrow M_{g}$ of degree one;
(b) there is no retraction of M_{g+h} onto $M_{g} \backslash \operatorname{Int} D^{2}$ where $M_{g+h}=$ $M_{g} \# M_{h}$ be the connected sum, i.e.,

$$
M_{g+h}=\left(M_{g} \backslash \operatorname{Int} D^{2}\right) \cup_{\partial D^{2}}\left(M_{h} \backslash \operatorname{Int} D^{2}\right) .
$$

SOLUTION: (a) We show that a degree one map $f: M \rightarrow N$ between closed orientable n-manifolds induces an epimorphism of homology groups. For any $a \in H_{i}(N)$ by the Poincare duality there exists a cohomology class $\alpha \in H^{n-i}(N)$ dual to a, i.e., $[N] \cap \alpha=a$. The Naturality of the cap product fomula

$$
f_{*}\left(\sigma \cap f^{*} \phi\right)=f_{*}(\sigma) \cap \phi
$$

implies that

$$
f_{*}\left([M] \cap f^{*}(\alpha)\right)=f_{*}([M]) \cap \alpha=[N] \cap \alpha=a .
$$

Note that $\operatorname{rank}\left(H_{1}\left(M_{h}\right)\right)<\operatorname{rank}\left(H_{1}\left(M_{g}\right)\right.$ when $g>h$. Hence f_{*} cannot be surjective. Thus, there is no degree one map $f: M_{h} \rightarrow M_{g}$ for $g>h$.
(b) Let $r: M_{g+h} \rightarrow M_{g} \backslash$ Int D^{2} be a retraction. We define a map $f: M_{h} \rightarrow M_{g}$ as follows. We set $f=r$ on $M_{h} \backslash \operatorname{Int} D^{2}$ and $f=i d$ on D^{2}. Since r is a retraction, these two functions agree on ∂D^{2} and f is
continuous by the Pasting Lemma. Note that $\operatorname{deg} f=1$ since the local degree of $i d$ is 1 and we can compute the degree of f using local degrees of the preimage $f^{-1}(c)$ where c is the center of D^{2}. This contradicts to (a).

