1. Let $q : \Delta^2 \to X$ be the quotient map obtained by the preserving the ordering identification of the edges $[v_0, v_1]$ and $[v_1, v_2]$ in the simplex $\Delta^2 = [v_0, v_1, v_2]$.
 (a) Compute the homology groups $H_*(X)$;
 (b) Compute the relative homology groups $H_*(X, A)$ where $A = q([v_0, v_2])$.

2. Compute the fundamental group and the homology groups of the Klein bottle.

3. Let X be the mapping cone of a map $p : S^1 \to S^1$ of degree p.
 (a) Compute the groups $H_n(X)$;
 (b) Compute the groups $H_n(\tilde{X})$ where \tilde{X} is the universal cover of X.

4. Compute the fundamental group of the quotient space of an annulus obtained by identifying antipodal points on the outer circle and identifying points on the inner circle which are $2/3\pi$-apart.

5. Find all covering spaces of $\mathbb{RP}^2 \vee \mathbb{RP}^2$.

6. Compute the Euler characteristic $\chi(T^n)$ of the n-dimensional torus and the group $H_n(T^n)$.

7. Compute the homology groups of $K \times S^1$ where K is the Klein bottle.

8. Does there exist a covering space of the surface M_3 of genus 3 with
 (a) the deck transformation group $\mathbb{Z} \times \mathbb{Z}$?
 (a) the deck transformation group $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$?
 (c) [Extra Credit] the fundamental group $\mathbb{Z} \times \mathbb{Z}$?