MIDTERM SOLUTIONS

1. Show that there is no retractions \(r : X \to A \) in the following cases:

 SOLUTION: Let \(i : A \to X \) denote the inclusion. In case of retraction we have that \(i_* \) is injective and \(r_* \) is surjective.

 (a) \(X = \mathbb{R}^3 \) with \(A \subset \mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3 \) equal the unit circle.
 Since \(\pi_1(A) = \mathbb{Z} \) and \(\pi_1(\mathbb{R}^3) = 0 \), the homomorphism \(i_* \) cannot be injective. Thus, there is no retraction.

 (b) \(X = S^1 \times D^2 \) with \(A \) its boundary \(S^1 \times S^1 \).
 Since \(\pi_1(A) = \mathbb{Z} \times \mathbb{Z} \) and \(\pi_1(X) = \mathbb{Z} \), the homomorphism \(i_* \) cannot be injective. Thus, there is no retraction.

 (c) \(X = D^2 \vee D^2 \) and \(A = S^1 \vee S^1 \) its boundary.
 Since \(\pi_1(A) = \mathbb{Z} \ast \mathbb{Z} \) and \(\pi_1(X) = 0 \), the homomorphism \(i_* \) cannot be injective. Thus, there is no retraction.

 (d) \(X \) is the Mobius band and \(A \) its boundary.
 Suppose there is a retraction \(r : X \to A \). Then \(r_*i_* = 1 \). Since \(i \) is homotopic to a map tracing out the mid circle of the Mobius band twice, \(i_* : \mathbb{Z} \to \mathbb{Z} \) is multiplication by 2. Then we obtain that 1 is divisible by 2: \(1 = r_*i_*(1) = r_*(2) = 2r_*(1) \). Contradiction.

2. Let \(X \) be the quotient space of \(S^2 \) obtained by identifying the north and the south poles to a single point. Put a CW complex structure on \(X \) and use it to compute \(\pi_1(X) \).

 SOLUTION: Let \(a \) be a meridian from the south pole \(S \) to the north pole \(N \). Then the complement to \(a \) is an open 2-cell. Thus, we have a CW complex structure on \(S^2 \) with two 0-cells \(S \) and \(N \), one 1-cell \(a \), and one 2-cell \(e \). When we identify \(S \) and \(N \) we obtain a CW complex structure on \(X \). The attaching map of \(e \) is represented by the word \(aa^{-1} \). To see that we cut \(S^2 \) open along \(a \) to obtain a disk with two copies of \(a \) on the boundary with the direction from \(S \) to \(N \). Thus, \(\pi_1(X) \) has a presentation \(\langle a \mid aa^{-1} \rangle \) which is after reduction \(\langle a \rangle = \mathbb{Z} \).

3. Let \(X \subset \mathbb{R}^3 \) be the union of 5 lines through the origin. Compute \(\pi_1(\mathbb{R}^3 \setminus X) \).

 SOLUTION: Using the radial projection we can deform \(X \) to the sphere with 10 points removed: 2 for each line. The 2-sphere with 10
points removed is homeomorphic to \mathbb{R}^2 with 9 points removed. The latter is homotopy equivalent to the wedge of 9 circles. Thus, $\pi_1(X) = F_9$, free group with 9 generators.

4. Construct the universal covering of the space $X \subset \mathbb{R}^3$ that is the union of a sphere and a diameter.

Solution: It is an alternating chain of spheres and intervals.

5. (extra credit) Find all connected 3-sheeted coverings of $S^1 \vee S^1$.

Answer: There are 7 of such