1. Let $p : \tilde{X} \to X$ be a covering map. Let $x_0 \in A \subset X$ and $\tilde{x}_0 \in p^{-1}(x_0)$. Show that $p_* : \pi_n(\tilde{X}, p^{-1}(A), \tilde{x}_0) \to \pi_n(X, A, x_0)$ is an isomorphism for all $n > 2$.

SOLUTION: Consider the commutative diagram generated by the long exact sequences of pairs $(\tilde{X}, p^{-1}(A))$ and (X, A).

\[
\begin{array}{cccccc}
\pi_n(p^{-1}(A)) & \longrightarrow & \pi_n(\tilde{X}) & \longrightarrow & \pi_n(\tilde{X}, p^{-1}(A)) & \longrightarrow & \pi_{n-1}(p^{-1}(A)) & \longrightarrow & \pi_{n-1}(\tilde{X}) \\
\cong & \downarrow & \cong & \downarrow & p_* & \downarrow & \cong & \downarrow & \cong \\
\pi_n(A) & \longrightarrow & \pi_n(X) & \longrightarrow & \pi_n(X, A) & \longrightarrow & \pi_{n-1}(A) & \longrightarrow & \pi_{n-1}(X)
\end{array}
\]

and apply Five Lemma to conclude that p_* is an isomorphism.

EXTRA Credit $n = 2$: In the diagram

\[
\begin{array}{cccccc}
\pi_2(p^{-1}(A)) & \longrightarrow & \pi_2(\tilde{X}) & \longrightarrow & \pi_2(\tilde{X}, p^{-1}(A)) & \longrightarrow & \pi_1(p^{-1}(A)) & \longrightarrow & \pi_1(\tilde{X}) \\
\cong & \downarrow & \cong & \downarrow & p_* & \downarrow & \alpha & \downarrow & \cong \\
\pi_2(A) & \longrightarrow & \pi_2(X) & \longrightarrow & \pi_2(X, A) & \longrightarrow & \pi_1(A) & \longrightarrow & \pi_1(X)
\end{array}
\]

the homomorphism α is the induced by a covering map $p|_{\tilde{A}_0} : \tilde{A}_0 \to A_0$ of a path component \tilde{A}_0 of $p^{-1}(A)$ containing \tilde{x}_0 onto a path component A_0 of A. Therefore α is a monomorphism. By the mono version of the 5-Lemma p_* is injective. Since every map $f : (D^2, s_0) \to (X, x_0)$ admits a lift $\tilde{f} : (D^2, s_0) \to (\tilde{X}, \tilde{x}_0)$, where $s_0 \in \partial D^2$, the homomorphism p_* is surjective.

2. Show that a CW complex X retracts onto any contractible subcomplex A.

SOLUTION: We construct a retraction $r : X^k \cup A \to A$ by induction on k. Inductive step follows from the fact that a map of the k-skeleton X^k extends to a map of the $(k+1)$-dimensional skeleton X^{k+1} provided $\pi_k(A) = 0$. The latter holds true, since A is contractible.

3. Show that if X is m-connected and Y is n connected CW complexes, then the smash product $X \wedge Y$ is $(m+n+1)$-connected.

SOLUTION: There are homotopy equivalences $f_X : X \to X_1$ and $f_Y : Y \to Y_1$ to CW complexes such that $X_1^m = x_0$ and $Y_1^n = y_0$. Let g_X and g_Y be the homotopy inverse We may assume that all these maps take the base points to the base points.

Claim (proven in the class): Suppose that CW complexes X and X' both contain a subcomplex A and let $f : X \to X'$ be a homotopy
equivalence with \(f|_A = 1_A \). Then there is homotopy equivalence of pairs \(f : (X, A) \to (X', A) \).

We apply this claim to \(f_X \) and \(f_Y \) with \(A = pt \). Then the homotopy equivalence \(f_X \times f_Y : X \times Y \to X_1 \times Y_1 \) is a homotopy equivalence of the pairs \((X \times Y, X \vee Y)\) and \((X_1 \times Y_1, X_1 \vee Y_1)\). Indeed, if \(h_t : (X, x_0) \to (X, x_0) \) and \(q_t : (Y, y_0) \to (Y, y_0) \) are homotopies from \(g_X f_X \) to \(1_X \) and \(g_Y f_Y \) to \(1_Y \), then \((h_t \times q_t)(X \times y_0 \cup x_0' \times Y) \subset X \times y_0 \cup x_0' \times Y\). Therefore, the homotopy equivalence \(f_X \times f_Y \) defines the homotopy equivalence of the quotient spaces \(F : (X \times Y)/(X \vee Y) = X \wedge Y \to (X_1 \times Y_1)/(X_1 \vee Y_1) = X \). Since \((X_1 \wedge Y_1)^{m+n+1} = pt \), \(X_1 \wedge Y_1 \) is \((m + n + 1)\)-connected.

4. Show that the action of \(\pi_1(\mathbb{R}P^2) \) on \(\pi_2(\mathbb{R}P^2) \) is nontrivial.

SOLUTION. Let \(p : S^2 \to \mathbb{R}P^2 \) be the universal covering map, \(p(s_0) = x_0 \). There is an isomorphism \(\Phi : \pi_2(\mathbb{R}P^2, x_0) \to \pi_2(S^2, s_0) \) defined as follows: Since \(S^2 \) is simply connected, for any continuous map \(f : (S^2, s_0) \to (\mathbb{R}P^2, x_0) \) there is a unique lift \(\tilde{f} : (S^2, s_0) \to (S^2, s_0) \) of \(f \). The isomorphism \(\Phi \) takes the class \([f]\) to \([\tilde{f}]\). Let \(\tilde{\gamma} \) be a path from \(s_0 \) to \(-s_0\) and let \(\gamma = p \tilde{\gamma} \). Then \(\gamma \) generates \(\pi_1(\mathbb{R}P^2, x_0) \). We show that \(\gamma[p] \neq [p] \). For that we show that \(\Phi(\gamma[p]) \neq \Phi([p]) \). We use the degree isomorphism \(deg : \pi_2(S^2, s_0) \to \mathbb{Z} \). Note that \(\Phi([p]) = [1_{S^2}] \) is the identity class. Hence \(deg(\tilde{p}) = 1 \). Note that the lift of \(\gamma^* p : I^2 \to \mathbb{R}P^2 \) is \(\tilde{\gamma}^* p' \) where \(p' : (S^2, s_0) \to (S^2, -s_0) \) is the unique lift of \(p \) with the initial point \(-s_0\). Thus \(p' = -1 \) is the antipodal map. Note that the degree of \(\tilde{\gamma}^* p' \) equals the degree of \(p' \), equals -1.

5. Show that any \(n \)-connected \(n \)-dimensional CW complex \(X \) is contractible.

SOLUTION: We construct by induction on \(k \) a map \(H : X^k \times [0, 1] \cup X \times \{0, 1\} \to X \) with the restriction to \(X \times 0 \) and \(X \times 1 \) equal to the identity and a constant map respectively. Since \(X \) is \(n \)-connected we can do it up to \(k = n \). Note that \(X^n = X \).