Topology 2

QUIZ 2

NAME:

1. Compute the simplicial cohomology $H^*(K; \mathbb{Z}_2)$ of the Klein bottle using a Δ -complex structure on K.

SOLUTION: The chain complex for the standard Δ -complex structure for K is

$$0 \to \mathbb{Z}\langle U, L \rangle \xrightarrow{\partial_1} \mathbb{Z}\langle a, b, c \rangle \xrightarrow{0} \mathbb{Z}\langle v \rangle \to 0$$

with $\partial_1(U) = b - c + a$ and $\partial_1(L) = a - c + b$. Let $a^* : Z\langle a, b, c, \rangle \to \mathbb{Z}_2$ be the dual to a, i.e., $a^*(a) = 1$ and $a^*(b) = a^*(c) = 0$. similarly we define b^* , c^* , U^* , and L^* . Then the cochain complex is

$$0 \leftarrow \mathbb{Z}_1 \langle U^*, L^* \rangle \stackrel{\delta_1}{\leftarrow} \mathbb{Z}_2 \langle a^*, b^*, c^* \rangle \stackrel{0}{\leftarrow} \mathbb{Z} \langle v^* \rangle \leftarrow 0.$$

Then $H^0(K; \mathbb{Z}_2) = \mathbb{Z}_2$, $H^1(K; \mathbb{Z}_2) = ker(\delta_1)$, and $H^2(K; \mathbb{Z}_2) = coker(\delta_1)$. Note that $\delta_1(a^*) = U^* + L^* = \delta_1(b^*) = \delta_1(c^*)$. Hence $coker(\delta_1) = \mathbb{Z}_2$ and $ker(\delta_1) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

2. Show that $\mathbb{R}P^3$ is not homotopy equivalent to $\mathbb{R}P^2 \vee S^3$. SOLUTION: We know that the cohomology ring

$$H^*(\mathbb{R}P^3; \mathbb{Z}_2) = \mathbb{Z}_2[\alpha]/(\alpha^4)$$

whereas the cohomology ring

$$H^*(\mathbb{R}P^2 \vee S^3; \mathbb{Z}_2) = \mathbb{Z}_2[\beta]/(\beta^3) \oplus \mathbb{Z}_2[\gamma]/(\gamma^2).$$

Since $x^3 = 0$ for all x in the former and $\alpha^3 \neq 0$ in the latter, these rings cannot be isomorphic. Hence, the spaces are not homotopy equivalent.