Topology, MTG 4930/6346 Fall-23
SOLUTIONS

Quiz 3

1. Compute the simplicial homology groups of the triangular parachute obtained from Δ^{2} by identifying its three vertices to a single point.

Everbody solved this one!
2. Compute $H_{n}(X, A)$ where $X=T \# T$ is a connected sum of two tori (a closed orientable surface of genus 2) and A is the separating circle.

SOLUTION. Since (X, A) is a good pair, $H_{n}(X, A)=\tilde{H}(X / A)$. Note that $X / A=T \vee T$ where T is a torus. Thus, $H_{n}(X, A)=\tilde{H}_{n}(T \vee T)=$ $\tilde{H}_{n}(T) \oplus \tilde{H}_{n}(T)$. Since homology groups of torus were computed in class, $\tilde{H}_{0}(T)=0, \tilde{H}_{1}(T)=\mathbb{Z} \oplus \mathbb{Z}, \tilde{H}_{2}(T)=\mathbb{Z}$, and $\tilde{H}_{n}(T)=0$ for $n>2$, we obtain that $H_{0}(X, A)=0, H_{1}(X, A)=\oplus^{4} \mathbb{Z}, H_{2}(X, A)=\mathbb{Z} \oplus \mathbb{Z}$, and $H_{n}(X, A)=0$ for $n>2$.
3. (extra credit) Does there exist a short exact sequence

$$
0 \rightarrow \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{8} \oplus \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4} \rightarrow 0 \text { ? }
$$

SOLUTION. Yes, if we take the monomorphism $\alpha: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{8} \oplus \mathbb{Z}_{2}$ defined as $\alpha(1)=(2,1)$, then the quotient group $\left(\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}\right) / \operatorname{Im}(\alpha)$ is isomorphic to \mathbb{Z}_{4}. Indeed, the element $(1,1)+\operatorname{Im}(\alpha)$ has order 4: $2(1,1) \notin \operatorname{Im}(\alpha)$ as well as $3(1,1) \notin \operatorname{Im}(\alpha)$ and, clearly, $4(1,1) \in$ $\operatorname{Im}(\alpha)$.

