Let \(q : X \to Y \) and \(r : Y \to Z \) be covering maps; let \(p = r \circ q \). Show if \(r^{-1}(z) \) is finite for each \(z \in Z \), then \(p \) is a covering map.

SOLUTION. Given \(z \in Z \), we show that there is an open neighborhood \(A \) of \(z \) which is even with respect to \(r \circ q \). Let \(U \) be an even neighborhood of \(z \) with respect to \(r \). Then
\[
 r^{-1}(U) = \prod_{j \in J} V_j
\]
with open \(V_j \subset Y \) such that the restriction of \(r \) to each \(V_j \) is a homeomorphism of \(V_j \) onto \(U \). For each \(j \in J \) we denote by \(y_j = r^{-1}(z) \cap V_j \) the point that corresponds to \(z \). Fix an open neighborhood \(W_j \subset V_j \) of \(y_j \) even with respect to \(q \). Thus,
\[
 q^{-1}(W_j) = \coprod_{i \in I_j} O_{ij}
\]
where \(O_{ij} \) are open in \(X \) and the restriction \(q_{|O_{ij}} : O_{ij} \to W_j \) is a homeomorphism for all \(i \) and \(j \). Note that each set \(r(W_j) \) is an open neighborhood of \(z \). We define
\[
 A = \bigcap_{j \in J} r(W_j).
\]
By the problem assumption we have that \(J \) is finite. Hence \(A \) is open. Denote the open sets \(r^{-1}(A) \cap V_j \) by \(A_j \) and the open sets \(q^{-1}(A_j) \cap O_{ij} \) by \(B_{ij} \). We show that \(A \) is even with respect to \(r \circ q \). Indeed,
\[
 (r \circ q)^{-1}(A) = q^{-1}(r^{-1}(A)) = q^{-1} \left(\prod_{j \in J} A_j \right) = \prod_{j \in J} q^{-1}(A_j) = \prod_{j \in J} \coprod_{i \in I_j} B_{ij}
\]
and the restriction \((r \circ q)|_{B_{ij}} : B_{ij} \to A \) is a homeomorphism as the composition of two homeomorphisms \(q_{|B_{ij}} : B_{ij} \to A_j \) and \(r_{|A_j} : A_j \to A \).