Large-Scale Comparison of Fungal Sequence Information: Mechanisms of Innovation in Neurospora crassa and Gene Loss in Saccharomyces cerevisiae

Edward L. Braun,1,2,4,5 Aaron L. Halpern,3,4,6 Mary Anne Nelson,1 and Donald O. Natvig1

1Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131 USA; 2National Center for Genome Resources, Santa Fe, New Mexico 87505 USA; 3Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131 USA

We report a large-scale comparison of sequence data from the filamentous fungus Neurospora crassa with the complete genome sequence of Saccharomyces cerevisiae. N. crassa is considerably more morphologically and developmentally complex than S. cerevisiae. We found that N. crassa has a much higher proportion of “orphan” genes than S. cerevisiae, suggesting that its morphological complexity reflects the acquisition or maintenance of novel genes, consistent with its larger genome. Our results also indicate the loss of specific genes from S. cerevisiae. Surprisingly, some of the genes lost from S. cerevisiae are involved in basic cellular processes, including translation and ion (especially calcium) homeostasis. Horizontal gene transfer from prokaryotes appears to have played a relatively modest role in the evolution of the N. crassa genome. Differences in the overall rate of molecular evolution between N. crassa and S. cerevisiae were not detected. Our results indicate that the current public sequence databases have fairly complete samples of gene families with ancient conserved regions, suggesting that further sequencing will not substantially change the proportion of genes with homologs among distantly related groups. Models of the evolution of fungal genomes compatible with these results, and their functional implications, are discussed.

Sequence comparisons are often used in comparative genomics to infer sequence/function relationships in one organism based on similarities to sequences in other organisms, but it is also instructive to ask about differences between organisms or their genomes and to ask how such differences arose. We have conducted a large-scale comparison of sequence information from the filamentous fungus Neurospora crassa, the unicellular fungus Saccharomyces cerevisiae, and sequences from nonfungal organisms, to investigate patterns of fungal genome evolution. A large number of N. crassa EST sequences are available (Nelson et al. 1997; this paper), as is the complete genome sequence of S. cerevisiae (Goffeau et al. 1996). N. crassa and S. cerevisiae are ascomycete fungi and are estimated to have diverged from each other at least 310 mya (Berbee and Taylor 1993) and probably >400 mya (Taylor et al. 1999). This represents sufficient time for substantial differences to have arisen, but it is substantially more recent than the divergence of the fungi from other eukaryotes, >1 bya (Knoll 1992; Feng et al. 1997).

The N. crassa genome is approximately three times the size of the S. cerevisiae genome. N. crassa also exhibits much greater morphological and developmental complexity (Springer 1993), suggesting that N. crassa has a substantially greater number of genes. The number of genes in N. crassa has been estimated to be 1.5–2.2 times greater than that of S. cerevisiae (Kupfer et al. 1997; Nelson et al. 1997). A previous analysis of ESTs from N. crassa indicated that it has a much higher proportion of genes without identifiable homologs (commonly designated “orphan” genes) than S. cerevisiae (Nelson et al. 1997), a finding that we demonstrate more rigorously here.

These differences in genome size, gene number, phenotypic complexity, and proportion of orphan genes raise various possibilities regarding the evolution of fungal genomes. On the one hand, it is possible that S. cerevisiae has been “streamlined” by the loss of genes, with a corresponding loss of phenotypic complexity (e.g., multicellularity). This hypothesis is consistent with phylogenetic analyses of the fungi that indicate that the unicellular fungi arose from multicellular ancestors (Bruns et al. 1992; Berbee and Taylor 1993; Liu...
et al. 1999). Some genes that are present in *N. crassa* but not in *S. cerevisiae* do reflect the loss from *S. cerevisiae* of genes present in the common ancestor of these organisms (Braun et al. 1998). Gene loss might result in a concentration of widely conserved genes that are essential for life (e.g., Mushegian and Koonin 1997; Snel et al. 1999), providing an explanation for the lower proportion of orphan genes in *S. cerevisiae*. On the other hand, addition of a large number of genes to the *N. crassa* genome subsequent to its divergence from the ancestor of *S. cerevisiae* could also explain the differences in genome size, developmental complexity, and—if the acquired genes were either truly novel or free to diverge radically from their sources—proportions of orphan genes.

We reasoned that comparison of *N. crassa* sequences to the complete *S. cerevisiae* genome and nonfungal sequence databases would provide us with insights bearing on these alternatives. For instance, genes present both in *N. crassa* and in other nonfungal eukaryotes but absent from *S. cerevisiae* are likely to reflect genes that have been lost from the *S. cerevisiae* lineage. Clearly, such gene losses could have substantial functional significance. Genes that are present in both *N. crassa* and prokaryotic organisms but not in *S. cerevisiae* or nonfungal eukaryotes are plausible candidates for horizontal transfer into the *N. crassa* lineage. If a large number of candidates for gene loss from *S. cerevisiae* or horizontal transfer into *N. crassa* were identified, these mechanisms could account for much of the difference in genome sizes and gene numbers between the two fungi. Although examples of both classes were identified by this study, a relatively modest number of candidate lost or transferred genes were identified, indicating that alternative explanations for the differences between *N. crassa* and *S. cerevisiae* must be sought.

RESULTS

In this study, we conducted large-scale homology searches using BLAST (Altschul et al. 1997) comparing *N. crassa* query sequences to three distinct databases: “SC,” the set of translated ORFs from the complete *S. cerevisiae* genome; “NF,” a set of translated ORFs from the nonfungal sequences in the public sequence databases; and “HMEST,” the human and mouse EST database. The NF and HMEST databases were largely independent, because NF contained annotated protein sequences from largely full-length cDNAs and genomic DNAs, whereas HMEST contained partial cDNA sequences from randomly sampled genes of humans and mice. For comparison, *S. cerevisiae* sequences (a set of ESTs and the translated ORFs from the complete *S. cerevisiae* genome) were also searched against NF and HMEST. These searches revealed several distinctive patterns of homolog distribution, summarized below. To facilitate interpretation of these patterns, additional ad hoc searches, described below, were performed against several additional data sets. Details regarding the custom sequence sets (databases) used for homology searches are provided in Table 1 and in Methods.

A Relatively Low Proportion of Expressed Sequences in *N. crassa* Can Be Identified by Homology Searches

We reported previously that only 33.6% of *N. crassa* cDNAs were clearly homologous to proteins in the National Center for Biotechnology Information (NCBI) protein database, according to ungapped BLAST-X searches using 1865 *N. crassa* ESTs (Nelson et al. 1997). Here, we extend this observation by analyzing a larger number of sequences, refining our methodology, and analyzing sets of “control” sequences from *S. cerevisiae*. Before conducting searches, *N. crassa* ESTs were grouped into “contigs” (sets of sequences that may not overlap but have a known spatial relationship, such as the sequences derived from both ends of a single cDNA clone; e.g., see Skupski et al. 1999). Thus, homology searches were conducted using 3578 *N. crassa* ESTs, grouped into 1197 contigs. Because the contigs are, for the most part, from distinct genetic loci, this constitutes some 10%–15% of the genes in *N. crassa*, based on the estimates of gene number by Kupfer et al. (1997) and Nelson et al. (1997).

These searches resulted in the identification of clear homologs (*E* ≤ 10^-50) outside of the fungi for only ~33% of loci (Table 2). In contrast, we found that >57% of predicted genes from *S. cerevisiae* have clear homologs in the same databases. This reflects more than the differences between the partial sequences obtained by EST projects and the full-length sequences obtained by genomic sequencing projects, because a higher proportion of *S. cerevisiae* ESTs also have identifiable homologs (Table 2). The differences are also not explained by the types of reads obtained by the Neurospora Genome Project, because a lower proportion of *N. crassa* sequences were identified for both 5’ and 3’ reads (data not shown). The fractions of columns containing mismatches or gaps in the contigs generated by TIGR Assembler (which reflect sequencing errors) are similar for the *N. crassa* and *S. cerevisiae* EST data sets (data not shown). Thus, compared with *S. cerevisiae*, it appears that a substantially greater proportion of expressed sequences from *N. crassa* represent orphan genes. This phenomenon has also been observed for complex multicellular eukaryotes such as plants and animals (Waterston and Sulston 1995; Delseny et al. 1997).

The Low Proportion of Identified Genes in *N. crassa* Does Not Represent Accelerated Molecular Evolution

One possible explanation for the observed difference between *N. crassa* and *S. cerevisiae* would be accelerated sequence divergence in *N. crassa*, resulting in a larger
The proportion of sequences that cannot be identified by homology searches. Such a global acceleration of molecular evolution has been suggested for *Caenorhabditis elegans* (Mushegian et al. 1998) and also for the fungi as a group (Feng et al. 1997; Stassen et al. 1997). However, comparisons of divergence from nonfungal sequences for paired orthologous sequences from *N. crassa* and *S. cerevisiae* indicate that the rates of molecular evolution in *N. crassa* and *S. cerevisiae* are similar (Fig. 1). Randomly chosen *N. crassa* sequences were paired with their closest homolog from *S. cerevisiae* databases; *N. crassa* sequences with no clear homolog in *S. cerevisiae* were excluded from the analysis. Although different loci within an organism may evolve at substantially different rates, for a given pair of homologous *N. crassa* and *S. cerevisiae* sequences, the degrees of divergence of these sequences from their non-

<table>
<thead>
<tr>
<th>Query set</th>
<th>Cutoff</th>
<th>SC</th>
<th>NF</th>
<th>HMEST</th>
<th>NF + HMEST</th>
<th>any</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E ≤ 0.01</td>
<td>E ≤ 10⁻⁵</td>
<td>E ≤ 0.01</td>
<td>E ≤ 10⁻⁵</td>
<td>E ≤ 0.01</td>
<td>E ≤ 10⁻⁵</td>
</tr>
<tr>
<td>Ncr ESTs</td>
<td>31.4</td>
<td>26.6</td>
<td>29.5</td>
<td>24.0</td>
<td>28.5</td>
<td>20.5</td>
</tr>
<tr>
<td>Scer ESTs</td>
<td>N.A.</td>
<td>47.6</td>
<td>40.1</td>
<td>44.7</td>
<td>38.8</td>
<td>51.4</td>
</tr>
<tr>
<td>Ncr</td>
<td></td>
<td>40.2</td>
<td>33.2</td>
<td>37.0</td>
<td>30.3</td>
<td>34.9</td>
</tr>
<tr>
<td>SC</td>
<td>N.A.</td>
<td>62.9</td>
<td>54.4</td>
<td>50.3</td>
<td>43.8</td>
<td>65.6</td>
</tr>
</tbody>
</table>

*See Table 1 for descriptions of databases and query sets.

*Homologs detected at the indicated cutoffs in either NF or HMEST.

*Homologs detected at the indicated cutoffs in any of SC, NF, or HMEST.

*(N.A.) not applicable (S. cerevisiae queries were not compared with S. cerevisiae databases).

*(A)contig was counted as having a detectable homolog at a given cutoff if any of the component contigs did.

Table 1. Sequence Sets Used in Analyses

<table>
<thead>
<tr>
<th>Data set</th>
<th>No. of seqs.</th>
<th>No. of chars.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungal nucleotide data sets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NcrEST</td>
<td>3,578</td>
<td>1,821,906</td>
<td>N. crassa ESTs from the Neurospora Genome Project.</td>
</tr>
<tr>
<td>Ncr contigs</td>
<td>2,093</td>
<td>1,147,268</td>
<td>N. crassa sequences assembled from "Ncr EST."</td>
</tr>
<tr>
<td>ScerEST</td>
<td>3,424</td>
<td>1,136,588</td>
<td>S. cerevisiae ESTs from TIGR.</td>
</tr>
<tr>
<td>CAL</td>
<td>1,631</td>
<td>14,929,251</td>
<td>genomic sequence from C. albicans</td>
</tr>
<tr>
<td>ENI</td>
<td>13,404</td>
<td>5,594,817</td>
<td>nucleotide sequences from A. nidulans.</td>
</tr>
<tr>
<td>Fungal amino acid data sets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCR</td>
<td>1,007</td>
<td>400,653</td>
<td>translated ORFs for non-EST N. crassa sequences.</td>
</tr>
<tr>
<td>SC</td>
<td>6,227</td>
<td>2,908,935</td>
<td>translated ORFs from complete S. cerevisiae genome.</td>
</tr>
<tr>
<td>NAscF</td>
<td>2,130</td>
<td>735,449</td>
<td>translated ORFs from nonascomycete fungi.</td>
</tr>
<tr>
<td>Spo</td>
<td>8,358</td>
<td>3,708,009</td>
<td>translated ORFs from S. pombe.</td>
</tr>
<tr>
<td>Nonfungal nucleotide data sets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMEST</td>
<td>1,228,825</td>
<td>455,623,980</td>
<td>human and mouse ESTs from dbEST.</td>
</tr>
<tr>
<td>Nonfungal amino acid data sets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NF</td>
<td>206,898</td>
<td>64,637,987</td>
<td>translated ORFs for nonfungal organisms.</td>
</tr>
<tr>
<td>EUTH</td>
<td>166,241</td>
<td>44,409,356</td>
<td>translated ORFs from eutherian (placental) mammals.</td>
</tr>
</tbody>
</table>

Table 2. Percentages of Sequences with Detectable Homologs in Various Databases

- E ≤ 0.01: homologs detected at the indicated cutoffs in either NF or HMEST.
- E ≤ 10⁻⁵: homologs detected at the indicated cutoffs in any of SC, NF, or HMEST.
- (N.A.) not applicable (S. cerevisiae queries were not compared with S. cerevisiae databases).
- A contig was counted as having a detectable homolog at a given cutoff if any of the component contigs did.

fungal homologs are approximately equal, as indicated by similar scores for the best match.

This analysis did identify one protein from S. cerevisiae that is substantially more divergent from nonfungal homologs than is the homologous N. crassa protein. The divergent protein (Fig. 1, point “γ”) corresponds to γ-tubulin, an S. cerevisiae protein that has been established on the basis of detailed analyses to have undergone an unusual degree of divergence from orthologous γ-tubulins present in other organisms (Keeling and Doolittle 1996). Thus, for a limited number of genes, S. cerevisiae may actually exhibit accelerated evolution relative to N. crassa (also see Stassen et al. 1997). However, the two organisms appear to have similar rates of evolution for most genes for which homologs may be identified, suggesting that the high proportion of orphan genes in N. crassa does not reflect a global acceleration of molecular evolution in that organism.

Comparisons of Different Databases Identify Patterns of Genome Evolution

Comparisons of homology searches conducted with N. crassa queries against different databases reveal several distinct patterns of homolog distribution. Figure 2 compares the results of searches for homologs of N. crassa sequences in nonfungal organisms (x-axis) and in S. cerevisiae (y-axis). A majority of loci (discontigs) from N. crassa did not exhibit significant similarity to sequences in any of the databases, giving rise to points in the figure that lie near the origin. Many N. crassa loci have homologs in both S. cerevisiae and nonfungal organisms, corresponding to points away from both axes; most of these points lie near the line y = x, indicating—perhaps surprisingly—that they are not substantially more similar to homologous S. cerevisiae sequences than to nonfungal sequences. Loci with significant similarities to nonfungal organisms but with no detectable homologs in S. cerevisiae appear as points near the x-axis (but away from the origin); they constitute potential cases of genes lost from S. cerevisiae or cases of horizontal transfer into N. crassa. Loci with homologs in S. cerevisiae but with no significant similarity to any known nonfungal proteins, constituting proteins that may be restricted to the fungi, appear as points near the y-axis (away from the origin). These general patterns and the interpretation of specific cases are considered in more detail in the following sections.

A Small Set of Fungal-Specific Proteins Can Be Identified

Although most N. crassa genes with identifiable homologs have both nonfungal and S. cerevisiae homologs, a small number of discontigs have homologs in S. cerevisiae but not in the non-fungal databases (Fig. 2). These may represent fungal-specific proteins, proteins that have diverged sufficiently that nonfungal

Figure 1 Rates of divergence are similar for N. crassa and S. cerevisiae. Pairs of homologous N. crassa and S. cerevisiae sequences were analyzed using BLAST against NF (a database of nonfungal protein sequences); each pair is represented by a point in the plot, with the x-axis showing the negative log of the E-value [−log (E)] of the best database match to the N. crassa query and the y-axis showing −log (E) of the best match to the S. cerevisiae query. (C) Pairs for which the N. crassa sequence was (part of) an EST from our data set; in these cases, the N. crassa contig and the paired S. cerevisiae sequence were trimmed to the region of overlap, as described in Methods. (●) Pairs for which the N. crassa and S. cerevisiae sequences were complete sequences. The outlying point in this plot, labeled “γ,” is γ-tubulin (see text).

Figure 2 Comparison of homology searches against nonfungal sequences and against S. cerevisiae sequences. Each point represents a single N. crassa contig, with the x-axis showing the negative logarithm of the E-value [−log (E)] of the best match in either NF or HMEST and the y-axis showing −log (E) of the best match in SC. Open circles represent possible cases of gene loss, horizontal transfer, or divergent orthologs (discontigs appearing in Tables 4–6). Gray circles represent possible cases of fungal specific genes (discontigs appearing in Table 3).
homologs are not detected or proteins for which non-
fungal homologs exist but have not yet been se-
quenced. Searches of the NF database using the full-
length S. cerevisiae homologs of N. crassa discontigs re-
vealed that some of these reflect artifacts of using
partial sequences because the S. cerevisiae sequences
had clear nonfungal homologs (E ≤ 10^{-5}). However,
nine cases remain candidates for fungal-specific genes
(Table 3). There appears to be some functional coher-
ence to these cases. Three candidates appear to be cell
wall components (such as Gas1p; see Popolo and Vai
1999), which may contribute to unique features of fun-
cial cell walls, and two candidates correspond to classes
do transcription factors that have not been reported
outside of the fungi [the homologs of Ecm22p, a
Gal4p-domain (C6 binuclear zinc cluster) protein (see
Henikoff et al. 1997), and Sos2p, an APSES DNA-
binding domain protein (see Aramayo et al. 1997)].

Table 3. Fungal-Specific Genes Present in the NGP

<table>
<thead>
<tr>
<th>Discontig</th>
<th>Identification</th>
<th>SC</th>
<th>E-valuea</th>
<th>Fungal distributionb</th>
</tr>
</thead>
<tbody>
<tr>
<td>III. Cell structure/cytoskeletonc</td>
<td>828 YOR081c</td>
<td>2</td>
<td>10^{-7}</td>
<td>Sp, Ca</td>
</tr>
</tbody>
</table>
| 1133 Pir1p (YKL164c) | 3 | 10^{-11} | Ca*
| 812 YOL048c | 4 | 10^{-8} | Ca | |
| 1003 Fht1p (YBR207w) | 3 | 10^{-26} | Sp, Ca |
| VII. RNA synthesis | 231 Ecm22p (YLR228c) | 5 | 10^{-7} | Sp, Ca, En |
| 489d Sok2p (YMR016c) | 4 | 10^{-23} | Sp, Ca, En |
| Unclassified | 469 YGR033c | 2 | 10^{-14} | Sp, Ca |
| 828 YOR081c | 3 | 10^{-7} | Sp, Ca |

Over 40 N. crassa genes were identified that have clear
nonfungal homologs (E ≤ 10^{-5} against NF or HMESt)
but no identifiable S. cerevisiae homologs (E > 0.1) (Fig.
2; Tables 4 and 5). Nearly 20 other N. crassa genes have
nonfungal homologs that are substantially better
matches than are the most similar S. cerevisiae se-
quencies (BLAST E-values for the best hit in the NF data
set at least a factor of 10^{10} smaller than the best S.
cerevisiae hit; Fig. 2; Tables 5 and 6). These two situa-
tions probably result from one of three evolutionary
events: loss of a gene from the S. cerevisiae lineage, hori-
zontal transfer of a gene into the N. crassa lineage, or
exceptional divergence of a gene in S. cerevisiae.

Additional searches of these nine cases were con-
ducted against sequence sets from other fungi. Ho-
omologs of all nine could also be identified in genomic
sequence from Candida albicans (data not shown), and
homologs of all but two could be identified in the
available sequence data from Schizosaccharomyces
pombe (Table 3). In sharp contrast, we were unable to
identify homologs for any of the genes in the nonasco-
mycete fungi (data not shown) and were only able to
identify Aspergillus nidulans homologs in four cases
(Table 3). This is likely to reflect limited sampling in
these organisms, but some of these candidate fungal-
specific proteins may actually be limited to the asco-
mycete fungi. These results suggest that most candi-
date fungal-specific genes can be identified in other
fungal lineages. However, the identification of so few
candidates suggests that the number of proteins that
are present in both multicellular and unicellular fungi,
but are not found in other groups of organisms, is quite
small.

A Set of N. crassa Sequences with Nonfungal
Homologs Lack S. cerevisiae Homologs

Examination of specific cases allows us to distin-
guish among these possibilities. In the majority of
cases (36; Table 4), absence of a clear homolog in S.
cerevisiae is most parsimoniously interpreted as the
result of gene loss, because apparent orthologs of the N.
crassa loci are present in other complex eukaryotes.
In 13 cases (Table 5), the best match with the N. crassa
sequence was a prokaryotic gene, and no closely re-
lated eukaryotic homolog was clearly identified. These
sequences may reflect horizontally transferred genes,
but this assignment should be viewed as tentative be-
cause additional sequencing of eukaryotes may reveal
closer matches, in which case they would be reinter-
preted as genes lost from S. cerevisiae. In the remaining
14 cases, an S. cerevisiae homolog was identified but
was not as close a match as a nonfungal eukaryote
homolog, similar to the situation described above for
/β-tubulin. These could, in principle, involve either the
loss of the S. cerevisiae ortholog from an ancient family
of duplicated genes or a case of accelerated divergence

*E-value of best BLAST hit against S. cerevisiae data set. E-value of best BLAST hit against nonfungal datasets is >0.1.

bDistribution of homologs within the fungi based on BLAST searches. (Sp) S. pombe; (Ca) C. albicans; (En) A. nidulans.

bFunctional categories are as described in Nelson et al. (1997), based on a modification of the system described by White and

cThese sequences [N. crassa discontigs 34 and 439 and S. cerevisiae Gas1p (YMR307w) and YOL030v] correspond to
paralogous fungal-specific genes encoding glycoprophospho-
lipid-anchored surface proteins. Gas1p has a weak nonfungal
hit, corresponding to a putative A. thaliana β-1,3-glucanase
(for details, see Popolo and Vai 1999).

dThe absence of a S. pombe Pir1p homolog may be more than
incomplete sampling, because previous studies were unable to
identify fragments hybridizing to the PIR1 gene in S. pombe
(Toh-e et al. 1993).

eDiscontig 489 corresponded to the Asm-1 gene, which has been
shown to encode an APSES-domain transcription factor
homologous to the S. cerevisiae Sos2p protein (Aramayo et al.
1996).
Table 4. Genes Lost from S. cerevisiae: N. crassa Discontigs with Nonfungal Homologs that Lack Detectable S. cerevisiae Orthologs

<table>
<thead>
<tr>
<th>Discontig Identification</th>
<th>NF E-valuea</th>
<th>SC E-valueb</th>
<th>Global distributionc</th>
<th>Fungal distributiond</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Cell divisiona</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>391 Sir2p family homolog, human</td>
<td>3×10^{-7}</td>
<td>—</td>
<td>An, Eu, A, B</td>
<td>En</td>
</tr>
<tr>
<td>II. Cell signaling/cell communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39 DdCAD-1 (Ca$^{2+}$-binding protein)</td>
<td>2×10^{-10}</td>
<td>—</td>
<td>Eu</td>
<td></td>
</tr>
<tr>
<td>563 NPH1 (nonphototrophic hypocotyl)</td>
<td>2×10^{-8}</td>
<td>—</td>
<td>Pl, B</td>
<td></td>
</tr>
<tr>
<td>861 shaker K$^+$ channel</td>
<td>2×10^{-48}</td>
<td>3×10^{-21}</td>
<td>An, Pl, A, B</td>
<td>Sp</td>
</tr>
<tr>
<td>III. Cell structure/cytoskeleton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223 N-acetyl-β-D-gluconamidase</td>
<td>10^{-17}</td>
<td>—</td>
<td>An, Pl, Eu, B</td>
<td>Ca</td>
</tr>
<tr>
<td>789 α-actinin</td>
<td>10^{-34}</td>
<td>10^{-6}</td>
<td>An, Eu</td>
<td>Sp</td>
</tr>
<tr>
<td>V. Metabolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 BPG-independent phosphoglycerate mutase</td>
<td>8×10^{-26}</td>
<td>—</td>
<td>An, Pl, Eu, B</td>
<td>En</td>
</tr>
<tr>
<td>71 pyruvate decarboxylase</td>
<td>10^{-28}</td>
<td>7×10^{-15}</td>
<td>B</td>
<td>Sp</td>
</tr>
<tr>
<td>97 glycine amidinotransferase</td>
<td>10^{-5}</td>
<td>—</td>
<td>An, B</td>
<td></td>
</tr>
<tr>
<td>125 citrate lyase β-chain</td>
<td>3×10^{-15}</td>
<td>—</td>
<td>An, B</td>
<td></td>
</tr>
<tr>
<td>209 UDP-glucose dehydrogenase</td>
<td>2×10^{-6}</td>
<td>—</td>
<td>An, Pl, B, A</td>
<td></td>
</tr>
<tr>
<td>220 annexin XIV</td>
<td>6×10^{-33}</td>
<td>—</td>
<td>An, Pl, Eu</td>
<td></td>
</tr>
<tr>
<td>225 β-glucosidase</td>
<td>2×10^{-47}</td>
<td>0.07</td>
<td>Pl, Eu, B</td>
<td>NA, Ca, En</td>
</tr>
<tr>
<td>338 peroxisomal copper amine oxidase</td>
<td>4×10^{-27}</td>
<td>—</td>
<td>B</td>
<td>Ca</td>
</tr>
<tr>
<td>362 dioxygenase, C. elegans</td>
<td>3×10^{-8}</td>
<td>—</td>
<td>An, B</td>
<td>Ca</td>
</tr>
<tr>
<td>368 nitrite reductase</td>
<td>4×10^{-22}</td>
<td>—</td>
<td>B</td>
<td>NA, En</td>
</tr>
<tr>
<td>396 4-hydroxyphenylpyruvate dioxygenase</td>
<td>6×10^{-21}</td>
<td>—</td>
<td>An, B</td>
<td>En</td>
</tr>
<tr>
<td>454 α-glucosidase (maltase)</td>
<td>3×10^{-37}</td>
<td>3×10^{-7}</td>
<td>An, Pl, Eu, A, B</td>
<td>NA, Sp, Ca, En</td>
</tr>
<tr>
<td>474 fructosyl amino acid oxidase</td>
<td>4×10^{-6}</td>
<td>—</td>
<td>An, B</td>
<td>Sp, En</td>
</tr>
<tr>
<td>521 methylmalonate-semialdehyde dehydrogenase</td>
<td>9×10^{-15}</td>
<td>—</td>
<td>An, Pl, B</td>
<td>Ca, En</td>
</tr>
<tr>
<td>522 sterol carrier protein thiolase</td>
<td>6×10^{-20}</td>
<td>0.022</td>
<td>An, A, B</td>
<td></td>
</tr>
<tr>
<td>526 enoyl-CoA hydratase</td>
<td>4×10^{-14}</td>
<td>—</td>
<td>An, Pl, A, B</td>
<td></td>
</tr>
<tr>
<td>536 3-glutamyl transpeptidase</td>
<td>8×10^{-11}</td>
<td>—</td>
<td>B</td>
<td>Ca</td>
</tr>
<tr>
<td>595 NADP-dependent oxidoreductase</td>
<td>10^{-13}</td>
<td>0.019</td>
<td>An, Pl, Eu, B</td>
<td>En</td>
</tr>
<tr>
<td>604 sorbitol utilization protein</td>
<td>6×10^{-17}</td>
<td>10^{-6}</td>
<td>An, Pl, B</td>
<td>Sp, Ca, En</td>
</tr>
<tr>
<td>693 uricase (urate oxidase), peroxisomal</td>
<td>7×10^{-8}</td>
<td>—</td>
<td>An</td>
<td>Sp, Ca, En</td>
</tr>
<tr>
<td>794 monoxygenase</td>
<td>2×10^{-24}</td>
<td>—</td>
<td>B</td>
<td>Ca</td>
</tr>
<tr>
<td>826 3-hydroxyisobutyrate dehydrogenase</td>
<td>2×10^{-8}</td>
<td>—</td>
<td>An, B</td>
<td>En</td>
</tr>
<tr>
<td>876 esterase</td>
<td>2×10^{-8}</td>
<td>—</td>
<td>An, B</td>
<td>Sp</td>
</tr>
<tr>
<td>880 α-amylase</td>
<td>10^{-5}</td>
<td>—</td>
<td>An, Eu, B</td>
<td>NA, Sp, En</td>
</tr>
<tr>
<td>1016 thioesterase II</td>
<td>2×10^{-8}</td>
<td>—</td>
<td>An, Pl, B</td>
<td></td>
</tr>
<tr>
<td>1090 glycerol kinase</td>
<td>2×10^{-28}</td>
<td>6×10^{-11}</td>
<td>An, A, B</td>
<td></td>
</tr>
<tr>
<td>VI. Protein synthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128 rab GTase</td>
<td>5×10^{-20}</td>
<td>4×10^{-57}</td>
<td>An, Pl, Eu</td>
<td>Sp, Ca, En</td>
</tr>
<tr>
<td>144 Int-6 (eIF3 subunit)</td>
<td>8×10^{-9}</td>
<td>—</td>
<td>An</td>
<td></td>
</tr>
<tr>
<td>253 40S ribosomal protein S15</td>
<td>3×10^{-44}</td>
<td>2×10^{-32}</td>
<td>An, Pl, Eu, A, B</td>
<td>Sp, Ca</td>
</tr>
<tr>
<td>276 BRC1 associated protein 1</td>
<td>5×10^{-17}</td>
<td>—</td>
<td>An, Pl</td>
<td>Sp, Ca</td>
</tr>
<tr>
<td>621 dolichol monophosphate transferase</td>
<td>2×10^{-23}</td>
<td>6×10^{-10}</td>
<td>An, Eu, A, B</td>
<td>Sp, Ca</td>
</tr>
<tr>
<td>910 ubiquitin-activating enzyme</td>
<td>7×10^{-16}</td>
<td>—</td>
<td>An, Pl, Eu</td>
<td>Sp</td>
</tr>
<tr>
<td>1079 t-Vps33a</td>
<td>10^{-15}</td>
<td>—</td>
<td>An</td>
<td>Sp</td>
</tr>
<tr>
<td>1110 eIF3-p40</td>
<td>10^{-21}</td>
<td>10^{-5}</td>
<td>An</td>
<td>Sp</td>
</tr>
<tr>
<td>Unclassified</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133 C. elegans C25D7.8</td>
<td>3×10^{-7}</td>
<td>—</td>
<td>An</td>
<td></td>
</tr>
<tr>
<td>467 hypothetical protein, Streptomyces coelicolor</td>
<td>4×10^{-7}</td>
<td>—</td>
<td>B</td>
<td>Sp</td>
</tr>
<tr>
<td>577 regucalcin (Ca$^{2+}$-binding protein)</td>
<td>10^{-5}</td>
<td>—</td>
<td>An, A, B</td>
<td>En</td>
</tr>
<tr>
<td>606 hypothetical protein similar to NO synthase</td>
<td>9×10^{-8}</td>
<td>—</td>
<td>An</td>
<td>Sp</td>
</tr>
<tr>
<td>1012 C. elegans F18F11.1 (peroxisomal protein homolog)</td>
<td>4×10^{-17}</td>
<td>—</td>
<td>An</td>
<td></td>
</tr>
<tr>
<td>1054 S'–nucleotidase precursor</td>
<td>8×10^{-15}</td>
<td>—</td>
<td>An, B</td>
<td></td>
</tr>
</tbody>
</table>

aE-value of best BLAST hit against nonfungal data set.
bE-value of best BLAST hit against S. cerevisiae data set.
cPhylogenetic distribution of orthologs based upon BLAST searches. (An) = Animals; (Pl) = plants; (Eu) = Other Eukaryotes; (A) = Archaea; (B) = Bacteria.
dDistribution of orthologs within the fungi based upon BLAST searches. (NA) = Nonascomycete fungi; (Sp) = S. pombe; (Ca) = C. albicans; (En) = A. nidulans. Presence of an ortholog to the N. crassa sequence in any of these fungi, except A. nidulans, was considered evidence for loss in the S. cerevisiae lineage.

Functional categories are as described in Nelson et al. (1997), based on a modification of the system described by White and Kerlavage (1996).

bNo S. cerevisiae database sequence received an E-value < 0.1.

cS. cerevisiae homologs that are listed in this table are likely to correspond to cases in which the orthologous S. cerevisiae gene has been lost but a paralogous gene retained.
in *S. cerevisiae*. Ten of these sequences appeared to represent cases of gene loss in which a paralogous sequence was retained (also listed in Table 4), whereas four cases appeared to represent divergent orthologs (Table 6), based on our criteria for orthology (see Methods). The putative divergent orthologs involve homologs of calmodulin, ALG-2, calnexin, and UDP–glucose glycoprotein transferase. Strikingly, the first three of these genes encode Ca$^{2+}$-binding proteins (see below), whereas the fourth (UDP–glucose glycoprotein transferase) shares a functional role with calnexin: They are both components of the endoplasmic reticulum quality control machinery (Parlati et al. 1995; Fernandez et al. 1996). Thus, there is functional coherence to this set of genes that appear to have undergone unexpected degrees of divergence.

Many of the genes that appear to have been lost in *S. cerevisiae* can be found in other fungi. Only 13 of the 46 (28%) candidates for gene loss have no apparent ortholog among the available fungal sequences, prob-
ably at least partly because of incomplete sampling. The nonascomycete fungi have the smallest number of orthologs in this category (4 sequences), whereas S. pombe has the largest number (18 sequences). These differences probably reflect both the potential for gene loss in these fungi and the availability of sequences. Only 14 of the 46 cases had orthologs in the available C. albicans sequences, indicating that some gene loss occurred after the divergence between C. albicans and S. cerevisiae.

Genes that Are Lost or Excessively Divergent in S. cerevisiae Indicate Functional Differences

Some of the proteins that have been lost or show unexpected divergence in S. cerevisiae are involved in basic cellular processes, such as translation, the ubiquitin system, peroxisome function, and ion homeostasis (Tables 4 and 6). Consistent with such loss or divergence reflecting functional adaptations specific to S. cerevisiae, we found instances of functionally related proteins in the set of genes lost from S. cerevisiae, such as the p40 and Int-6 subunits of the translation initiation factor elf3 (Asano et al. 1997). Perhaps most striking are the changes in genes that are involved in ion homeostasis, especially Ca²⁺ homeostasis. The marked divergence of the Ca²⁺-binding proteins calmodulin, ALG-2, and calnexin was discussed above (Table 6). Cases of gene loss include annexin (Ca²⁺-and phospholipid-binding protein; Braun et al. 1998), DdCAD-1 (a Dictostelium discoideum Ca²⁺-dependent cell–cell adhesion protein; Wong et al. 1996), and a homolog of the mammalian voltage-activated shaker K⁺ channels (e.g., McCormack et al. 1995; see Table 4). The presence of homologs of annexin and of shaker K⁺ channels in plants (Tang et al. 1995; Braun et al. 1998) further supports the view that such genes have been lost from S. cerevisiae, because the plants are likely to represent an outgroup to the animals and fungi (Baldauf and Palmer 1993).

Few Additional Homologs of N. crassa Sequences Could Be Identified in A. nidulans

Ozier-Kalogeropoulos et al. (1998) found that a high percentage of genes from the budding yeast *Kluyveromyces lactis* were homologs of *S. cerevisiae* genes previously considered orphans. Because *K. lactis* is closely related to *S. cerevisiae* (these yeasts diverged ~80 mya; see Berbee and Taylor 1993), we reasoned that a similar survey of *N. crassa* sequences using a relatively closely related organism, such as the filamentous ascomycete *A. nidulans*, might allow the identification of many orphan *N. crassa* sequences. In our data set, 342 *N. crassa* contigs (29%) had clear homologs in a database of 13404 *A. nidulans* ESTs, which extended the total number of contigs with a clear homolog in any database (those listed in Table 2 and the *A. nidulans* database) to 555 contigs (from 40% to 46%). Because the sequences available from *A. nidulans* probably represent somewhat more than half of the expressed genes (see Methods), this suggests that the availability of additional sequences from *A. nidulans* may allow the identification of clear homologs for slightly >50% of the *N. crassa* sequences examined in this study. However, these results suggest that the identification of homologs for many *N. crassa* orphan sequences will require the availability of sequences from fungi that are more closely related than *A. nidulans*, which diverged from *N. crassa* ~280 mya (Berbee and Taylor 1993).

Coverage of EST and Non-EST Databases Is Very Similar

Just as comparisons of homology search results against nonfungal and *S. cerevisiae* databases reveal patterns of genome evolution, comparisons of search results against two distinct databases of sequences from nonfungal organisms can provide information regarding the completeness of these databases. Our original reason for conducting searches using both NF (protein sequences from nonfungal organisms) and HMEST (human and murine ESTs) was to determine whether searching ESTs from humans and mice would substantially increase the number of *N. crassa* sequences for which a homolog was identified, relative to searching the NF database alone. However, our results showed this not to be the case; the results of homology searches against HMEST and NF using the *N. crassa* contigs are compared in Figure 3 and Table 2.

A majority of *N. crassa* loci did not exhibit significant similarity to sequences in either database (points near the origin in Fig. 3). A small number of *N. crassa* loci with significant matches to human or mouse EST sequences but no detectable homologs in the database of nonfungal protein sequences (points near the x-axis and away from the origin) constitute cases of gene families that have not been sequenced outside the fungi except in EST projects. A modest number of *N. crassa* loci have detectable homologs in the nonfungal database but not in the EST data set (points near the y-axis and away from the origin in Fig. 3). These could reflect incomplete sampling in HMEST or genes with restricted distribution outside the fungi (see below). Most *N. crassa* loci with significant identity to proteins in NF also have significant identity to proteins in HMEST (points near or above the line y = x in Fig. 3); the tendency for points to lie above y = x generally reflects matches to complete sequences in NF and partial sequences in HMEST, giving better BLAST scores against the NF database.

We found that only 33 (2.8%) of *N. crassa* contigs had clear homologs (*E* ≤ 10⁻⁵) in HMEST but not NF; of these, 15 (1.3% of the total number of contigs) have clear homologs in SC, whereas 18 (1.5%) are
found clearly only in HMEST. However, the number of discontigs for which there are clear homologs in NF but not HMEST is larger (98, or 8.2%). A priori, this could reflect less complete sampling in the EST database or the limitations of the partial sequences present in EST databases. However, closer inspection reveals that most of the N. crassa genes with homologs in NF but not HMEST also lack known homologs in both placental mammals and C. elegans (Table 7). Therefore, the absence of homologs in HMEST may reflect the true distribution of these genes. The majority (>65%) of N. crassa sequences with homologs in NF but not HMEST have biological functions related to metabolism (Table 7), including functions like the biosynthesis of vitamins and amino acids, suggesting that these sequences may correspond to proteins that have been lost in the animals.

DISCUSSION

Background

Most comparative genomics to date has focused on prokaryotes, reflecting the availability of multiple complete genome sequences from prokaryotes and the relatively high proportion (usually ~70%) of prokaryotic genes for which homologs may be identified in other organisms (Koonin et al. 1997). Genomic analyses of the ascomycete yeast S. cerevisiae have been nearly as successful in finding homologs in other organisms, with standard homology searches resulting in the identification of homologs for >60% of the genes (Koonin et al. 1994; Goffeau et al. 1996). However, genomic analysis of other eukaryotes may be substantially more difficult. The proportion of genes in Arabidopsis thaliana and C. elegans that can be identified by homology searches is much lower than for prokaryotes or S. cerevisiae (Waterston and Sulston 1995; Delseny et al. 1997; The C. elegans Sequencing Consortium 1998).

A detailed comparison of the S. cerevisiae and C. elegans genomes indicates that 51% of S. cerevisiae sequences have readily identified homologs in C. elegans, whereas only 26% of C. elegans proteins have readily identified homologs in S. cerevisiae (The C. elegans Sequencing Consortium 1998). This suggests that the relatively high proportion of proteins with “cross-phylum” homologs in S. cerevisiae may be exceptional for eukaryotes.

Patterns of Genome Evolution in the Fungi

Based on evaluation of ESTs representing ~10%–15% of the genes in N. crassa, we have extended a previous report (Nelson et al. 1997) that a smaller proportion of N. crassa genes have identifiable homologs than is observed for S. cerevisiae (Table 2) and various prokaryotes. This difference may be related to differences in the sizes of the S. cerevisiae and N. crassa genomes, ~13.5 Mb and 43 Mb, respectively. Estimates of the total number of genes in N. crassa vary considerably (Kupfer et al. 1997; Nelson et al. 1997), but most estimates indicate that N. crassa has at least 50% more genes than S. cerevisiae. Our results bear on several of the possible mechanisms by which such differences might have arisen.

Gene loss in S. cerevisiae appears to have had an important functional impact, but the proportion of N. crassa discontigs corresponding to genes lost from S. cerevisiae that were identified by our analyses (46 out of 396 for which clear homologs were detected in the nonfungal or EST databases; Fig. 2; Table 4) cannot account for the magnitude of differences in gene number between N. crassa and S. cerevisiae. Furthermore, loss of genes from S. cerevisiae does not inherently explain the relatively high proportion of orphan genes in N. crassa.

The results of various evolutionary and genomic analyses have led to contrasting views regarding the impact of horizontal gene transfer during evolution (Gogarten et al. 1996; Doolittle 1998; Woese 1998; Snel et al. 1999). At least some groups have proposed that it has played an important role in the evolution of eukaryotic genomes in general (Doolittle 1998) and fungal genomes in particular (Prade et al. 1997). Our analyses did reveal several possible cases of horizontal gene transfer from prokaryotes (Table 5), and many of the candidates for horizontal gene transfer do corre-
spond to “operational” genes encoding enzymes involved in modular metabolic functions, as suggested by previous analyses (Rivera et al. 1998; Jain et al. 1999). However, even if all of the candidates for horizontal transfer identified by this study reflect authentic cases (13 out of 1197 discontigs analyzed), <2% of *N. crassa* genes are plausibly derived from the incorporation of prokaryotic genes subsequent to divergence of the *N. crassa* and *S. cerevisiae* lineages.

It has been suggested that many fungal proteins exhibit a higher rate of molecular evolution than do homologous vertebrate proteins (Feng et al. 1997; Stassen et al. 1997). A similar difference in rate of evolution between *N. crassa* and *S. cerevisiae* could potentially explain the higher proportion of orphan genes in the former relative to the latter. However, our results (Fig. 1) show that there is not a global difference in rate between the two fungi.

Implications of Genetic Innovation in *N. crassa*

If there has been substantial genetic innovation in the *N. crassa* lineage, it is reasonable to speculate that many of the complex developmental pathways exhibited by *N. crassa* are mediated by novel protein-coding genes. One class of functionally characterized orphan genes identified in our earlier analysis of *N. crassa* ESTs...
corresponds to clock controlled genes regulated in response to light and circadian rhythms (Nelson et al. 1997). This is a well-characterized developmental pathway in N. crassa (Loros 1998) that is absent from S. cerevisiae. The current study identified an additional N. crassa gene (the NPH1 homolog; see Table 4) possibly involved in responses to light, as did additional analyses of N. crassa ESTs (nup-1; see Bieszke et al. 1999). However, some of the pathways that distinguish N. crassa from S. cerevisiae are found not only in filamentous ascomycetes related to N. crassa but also in other (nonascomycete) filamentous fungal lineages. Because these latter fungi are less closely related to N. crassa than is S. cerevisiae, a hypothesis of genetic innovation in N. crassa for these genes would require either convergent evolution or horizontal transfer between N. crassa and the nonascomycete filamentous fungi.

Furthermore, the mechanism by which N. crassa could have gained large numbers of genes is unclear. If the impact of horizontal transfer on the N. crassa genome has been relatively modest as our results suggest (see above), then more extensive genetic innovation would reflect either the duplication and divergence of genes (e.g., Tatusov et al. 1997) or overprinting [the generation of novel genes from noncoding sequences, as proposed by Keese and Gibbs (1992) and Ohno (1984)]. Gene duplication, long thought to be the primary mechanism responsible for the generation of novel genes (Ohno 1970; Kimura and Ohta 1974), does not explain our inability to identify homologs of any kind for most of the N. crassa transcripts analyzed. Furthermore, there are few large gene families in N. crassa (Nelson et al. 1997). This may be due to the fact that closely related sequences in the N. crassa genome are actively mutated by the RIP (Repeat Induced Point mutation) process (Selker 1990). Finally, although the high proportion of orphan genes could be explained by extensive overprinting, because genes derived in this way would truly lack homologs, the source of the requisite unexpressed ORFs remains obscure (but for potential sources, see Ohno 1984; Keese and Gibbs 1992).

An alternative possibility is that many cases of gene loss in S. cerevisiae could not be detected by our methods. Such cases might be drawn from two sources. Some could reflect novel genes introduced into the early fungi and subsequently lost from S. cerevisiae. We would have been unable to detect loss of such genes by our methods because they lack nonfungal orthologs and the number of fungal sequences is still limited. Such a pattern would also explain the high proportion of orphan genes in N. crassa. The greater developmental complexity of N. crassa would reflect retention of phenotypes ancestral to the fungi and the genes necessary for the expression of those phenotypes. This would be consistent with phylogenetic analyses indicating that the unicellular yeasts evolved from multicellular ancestors (Bruns et al. 1992; Berbee and Taylor 1993; Liu et al. 1999), and it would explain the relative paucity of fungal-specific genes identified by this study. If this hypothesis is correct, it should be revealed in future genome projects with diverse fungi, with the result that genes currently unique to N. crassa and its close relatives will be found in more distantly related fungal lineages. However, the relatively low proportion of N. crassa sequences with clear A. nidulans homologs suggests that few homologs for orphan sequences in N. crassa will be identified in distantly related fungi, unless it is possible to substantially increase the sensitivity of the methods used for database searches.

A second possible source of genes whose loss from S. cerevisiae could not be detected by the methods applied here would be genes that were inherited from the common ancestor of the eukaryotes but had limited functional importance and thus were under weak selective pressure. Such genes might both be disproportionately lost from S. cerevisiae and have a rate of divergence in N. crassa high enough to preclude detection of nonfungal homologs. It has been suggested previously that orphan genes reflect a class of rapidly evolving genes, based on the identification of a large number of such genes in Drosophila (Schmid and Tautz 1997) and the budding yeasts (Ozier-Kalogeropoulos et al. 1998). Significantly fewer phenotypically identified genes are found among the rapidly evolving Drosophila genes, suggesting that the latter are more likely to have relatively modest and difficult to detect phenotypes and that the rapid evolution of these proteins reflects weak purifying selection (see Kimura and Ohta 1974). Disproportionate loss of such genes is plausible, as suggested by Braun et al. (1998). We found support for the notion that genes that have been lost (or underwent excessive divergence) in S. cerevisiae are under weaker selection, because the N. crassa contigs with a clear homolog in the nonfungal data sets (E = 10^{-5}) that also have clear homologs in SC are generally more highly conserved (median nonfungal E = 8 \times 10^{-22}, n = 315) than those that lack clear homologs in SC (median nonfungal E = 2 \times 10^{-10}, n = 81).

Implications of Gene Loss in S. cerevisiae

Patterns of gene evolution may provide functional information about the genes identified using genome sequence data (Rivera et al. 1998; Pellegrini et al. 1999). Examination of the genes that appear to have been lost or are highly divergent in S. cerevisiae reveals a surprising number of genes involved in basic cellular processes. Presumably, these changes have had an impact on the biology of S. cerevisiae. This may be true even in cases in which a paralog of a lost gene remains in the S. cerevisiae genome, such as the shaker K+ channel identified by this study (Table 4). The shaker K+ channel...
homolog present in \(S. \text{ cerevisiae} \) (YPL088w) shows greater similarity to a proteobacterial oxidoreductase than to eukaryotic K\(^+\) channels (data not shown), suggesting that YPL088w encodes an oxidoreductase unlikely to provide a biological activity that compensates for the absence of a shaker K\(^+\) channel.

Global changes in the ion homeostasis systems in \(S. \text{ cerevisiae} \) are strongly suggested by our analyses. One gene previously demonstrated to have been lost in \(S. \text{ cerevisiae} \) encodes the Ca\(^{2+}\)-binding protein annexin (Braun et al. 1998). Three of the four putative divergent orthologs in \(S. \text{ cerevisiae} \) that were identified by this study are most closely related to the Ca\(^{2+}\)-binding proteins calmodulin, calnexin, and AlG-2. Strikingly, there is evidence for functional divergence for two of the divergent \(S. \text{ cerevisiae} \) genes (Geiser et al. 1991; Moser et al. 1995; Parlati et al. 1995). These data suggest that multiple \(S. \text{ cerevisiae} \) Ca\(^{2+}\)-binding proteins that localize to different subcellular compartments have undergone functional divergence from homologous proteins in other organisms and that this divergence occurred after the divergence of \(S. \text{ cerevisiae} \) from other well-studied fungi, such as \(N. \text{ crassa} \), \(A. \text{ nidulans} \), and \(S. \text{ pombe} \).

It is believed that \(S. \text{ cerevisiae} \) underwent a complete genome duplication after its divergence from \(K. \text{ lactis} \) (Wolfe and Shields 1997) and that most duplicated sequences were subsequently lost (Keogh et al. 1998). One might suppose that the instances of gene loss revealed here occurred during this same period. However, the identification of so few \(C. \text{ albicans} \) homologs (30% of the genes in Table 4) given that the \(C. \text{ albicans} \) genomic sequence is >90% complete (see Methods) strongly suggests that some gene loss also occurred prior to the divergence between \(C. \text{ albicans} \) and \(S. \text{ cerevisiae} \). Furthermore, inspection of searches involving \(K. \text{ lactis} \) sequences (Ozier-Kalogeropoulos et al. 1998) and comparison with the results presented in this paper suggests that loss of genes from the \(S. \text{ cerevisiae} \) lineage occurred both before and after its divergence from \(K. \text{ lactis} \) (data not shown). Thus, it is likely that some level of gene loss has occurred at many stages during the evolution of \(S. \text{ cerevisiae} \) and, presumably, other fungal lineages as well.

Coverage of the Nonfungal Database and the Mammalian EST Database

To understand the significance of the high proportion of \(N. \text{ crassa} \) genes that are currently orphans, we must consider the completeness of the nonfungal databases. We found that nearly all \(N. \text{ crassa} \) contigs that had eukaryotic homologs in the NF database also had homologs among the mammalian ESTs (Fig. 3; Tables 2 and 7). Likewise, few \(N. \text{ crassa} \) contigs have homologs in the human and mouse EST data set but not in NF. These results imply that incompleteness of the public sequence databases is not a major factor in the high proportion of \(N. \text{ crassa} \) discontigs that lack nonfungal homologs and also that the sampling of conserved gene families is fairly complete in both the EST and non-EST sequence databases. That is, additional sequencing will reveal few additional broadly distributed, conserved gene families. Green et al. (1993) proposed that there is a limited number of “Ancient Conserved Regions”; our results suggest that we are rapidly approaching a complete set.

Summary

Our analyses suggest that the differences in genome size and proportions of orphan genes between \(N. \text{ crassa} \) and \(S. \text{ cerevisiae} \) reflect some combination of genetic innovation in the \(N. \text{ crassa} \) lineage and loss of genes from the \(S. \text{ cerevisiae} \) lineage. There remain mysteries associated with either of these possible avenues of genome evolution: The mechanism of genetic innovation in the \(N. \text{ crassa} \) lineage is presently unclear, whereas extensive loss from the \(S. \text{ cerevisiae} \) lineage would require the disproportionate loss of genes that do not have recognizable nonfungal homologs. It may be that relative to \(S. \text{ cerevisiae} \), \(N. \text{ crassa} \) retains many more uniquely fungal processes. The loss of specific, functionally important proteins during the evolution of \(S. \text{ cerevisiae} \) that we have documented shows that surprising biological inferences can be made by the types of large-scale comparisons performed here (also see Pellegrini et al. 1999). Our ability to identify various patterns of genome evolution using single-pass sequence data demonstrates the utility of EST projects for evolutionary and comparative genomic investigations (Braun et al. 1998). However, the absence of complete genomic sequence for \(N. \text{ crassa} \) does mean that some questions may only be asked in one direction; for instance, we could identify cases of probable gene loss from \(S. \text{ cerevisiae} \) but not cases of loss from \(N. \text{ crassa} \).

The growing availability of sequence data from the fungi should allow further exploration of the patterns of genome evolution identified by this study.

METHODS

Generation of \(N. \text{ crassa} \) cDNA Sequences

Partial cDNA sequences (ESTs) were generated as part of the Neurospora Genome Project (NGP). Current information on the NGP is available from the project’s Web page (http://www.unm.edu/~ngp) or by contacting M.A.N. or D.O.N. The sequences analyzed in this paper were generated either as described (Nelson et al. 1997) or using the Thermosequenase dye terminator premix kit (Amersham) according to the manufacturer’s recommendations. The directionally cloned cDNA libraries have been described previously (Nelson et al. 1997); some additional sequences reported here were obtained after highly expressed messages reported in that paper were identified by hybridization as described by Ausubel et al. (1994) and removed from the arrays of clones that were se-
sequenced. A total of 3578 *N. crassa* ESTs from 2202 clones were analyzed in this paper; 1313 ESTs were derived using the T3 sequencing primer (5' reads), and 2265 ESTs were derived using the T7 primer (3' reads). Quality control procedures have been presented previously (Nelson et al. 1997), and the error rates for this data set are comparable with those seen in other EST projects (including the *S. cerevisiae* ESTs described below).

Assembly and Clustering of *N. crassa* ESTs

ESTs were assembled with The Institute for Genomic Research (TIGR) assembler using defaults for EST assembly (Sutton et al. 1995), resulting in 2093 contigs. To further group contigs that reflect transcripts of the same locus, the contigs were assembled into 1197 contig sets (contiguous-sequence clusters) using both single-linkage clustering of sequences with gapped BLAST-N E-values \(\leq 10^{-22} \) and grouping of T3 and T7 reads based on shared clone names. Because of problems associated with EST sequencing projects, such as lane-tracking errors, record keeping errors, and the presence of chimeric clones, some contigs will contain sequences representing the transcripts of more than one locus. Based on analysis of apparent chimeric patterns in search results (data not shown), we estimate between 60 and 100 improperly clustered contigs, indicating that the EST data set represents the transcripts of 1250–1300 loci.

Public Data Sets

Computational analyses were performed on several sets of sequences obtained from public databases. Details of these data sets are given in Table 1. The *C. albicans* data set is probably fairly complete, because the CAL data set contains 14.9 Mb of genomic sequence, which is 93% of the 16-Mb *C. albicans* genome (Keogh et al. 1998). This is supported by the fact that 233 out of 240 (97%) of *N. crassa* contigs with identified homologs in each of SC, NF, and HMEST also had homologs in the CAL data set. The *A. nidulans* data set is composed primarily of ESTs, making estimation of coverage more difficult, but 168 (68%) of these same 240 contigs have homologs in ENI, suggesting that ENI may be 60%–70% complete.

Homology Searches

Homology searches were carried out with the gapped BLAST programs (Altschul et al. 1997), using executable copies obtained from the NCBI (v.2.0.5). Searches were performed as comparisons of protein sequences, with translation of nucleotide query or database sequences as necessary (Blast-P, Blast-X, TBLast-X). Nucleotide queries were preprocessed with NSEG to mask low-complexity regions, and protein query sequences (including six-frame translations of ESTs) were filtered with SEG (Wootton and Federhen 1996). Unix scripts and C programs were used to automate searches on large sets of query sequences and to extract summary information (e.g., identity and E-value of best hit).

Queries were considered to have a clear homolog for E-values \(\leq 10^{-5} \). A contig was considered to have a clear homolog if any of the constituent contigs had a clear homolog. This cutoff gives a probability of including a single false hit (type I error) for the entire set of *N. crassa* queries of \(\leq 5\% \), based on Bonferroni correction for multiple comparisons. Queries were considered to have a possible homolog in a database for E-values \(\leq 0.01 \); this weaker cutoff will result in a moderate number of false database matches but should increase sensitivity. Queries were considered to have no poten-

tial homologs in a database for E-values > 0.1, because any homologous sequences in this divergent are beyond the common recognized “twilight zone” of evolutionary similarity (e.g., see Mushegian and Koonin 1996; Koonin et al. 1997).

We used homology searches to differentiate between orthology and paralogy (Fitch 1970) whenever possible. Homologous proteins were considered to be probable orthologs if comparisons between the *N. crassa* sequence, the best hit in the *S. cerevisiae* data set, and the best hit in the nonfungal database set form a symmetrical set, as described by Tatusov et al. (1997). We considered *N. crassa* genes to be candidates for genes resulting from horizontal transfer after divergence from *S. cerevisiae* if their best nonfungal hit was prokaryotic and they had no hit in the *S. cerevisiae* data set or in other fungi that would suggest that the gene was present in the common ancestor of *N. crassa* and *S. cerevisiae*. For this analysis, we assumed the fungal phylogeny of Bruns et al. (1992), whose relevant features were confirmed by Liu et al. (1999).

Comparison of Divergence (Molecular Clock Analyses)

The *N. crassa* contigs described in this paper and a set of full-length *N. crassa* protein sequences obtained from the NCBI were searched against the SC and NF databases. Sequences with BLAST hits of E \(\leq 10^{-5} \) against both SC and NF were identified and subjected to further analysis. Random subsets of full-length *N. crassa* protein sequences passing these criteria were chosen and paired with their best matches from SC. For pairs composed of an *N. crassa* contig, which was generally not full length, and a *S. cerevisiae* cDNA sequence, portions of both sequences that were not part of the region of overlap indicated by BLAST were removed, to ensure that the paired queries were comparable. The two members of each of the resulting pairs were searched against NF. Pairs for which the closest homologs in NF for either the *N. crassa* or *S. cerevisiae* sequence were clearly paralogs rather than orthologs (see above) were eliminated.

ACKNOWLEDGMENTS

We are grateful to M.P. Skupski (National Center for Genome Resources) for providing special purpose data sets, to S. Kang and the students associated with the *Neurospora* Genome Project for expert technical assistance, and to audiences at the University of New Mexico, Los Alamos National Laboratories, the Ohio State University, the University of Washington, EMBL Heidelberg, and the Laboratory of Molecular Systematics at the Smithsonian Institution for insightful comments. We are grateful to the Albuquerque High Performance Computing Center (AHPC) for computers and computational support and S. Blea for programming assistance. NGP sequencing was supported by UNM and NSF grant HRD-9550649 to D.O.N., M.A.N., M. Werner-Washburne, and R. Miller. A.L.H. was supported by NIH grant SP20-RR11830-02 and the AHPC.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

REFERENCES

Altschul, S.F., T.L. Madden, A.A. Shafer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A

Toh-e, A., S. Yasunaga, H. Nisogi, K. Tanaka, T. Oguchi, and Y. Matsui. 1993. Three yeast genes, *PIR1, PIR2* and *PIR3*, containing internal tandem repeats, are related to each other, and *PIR1* and *PIR2* are required for tolerance to heat shock. *Yeast* **9**: 481–494.

Received September 22, 1999; accepted in revised form February 10, 2000.