Genomics in Neurospora crassa: From One-Gene-One-Enzyme to 10,000 Genes

Applied Mycology and Biotechnology, Vol. 4, in press. Edited by DK Arora & GG Khachatourians.

Genomics in Neurospora crassa: From One-Gene-One-Enzyme to 10,000 Genes

Edward L. Braun, Donald O. Natvig, Margaret Werner-Washburne and Mary Anne Nelson*

Department of Zoology, University of Florida, Gainesville, Florida 32611 (E.L.B.)  and Department of Biology, University of New Mexico, Albuquerque, NM 87131 (D.O.N., M.W.-W., M.A.N.);

Neurospora crassa was the central organism in the development of biochemical genetics, providing a model system that established the relationship between genes and enzymes; it remains the best-studied filamentous fungus. This review focuses on the impact that the recent publication of a high-quality draft sequence of the N. crassa genome will have upon efforts to understand the biology of the filamentous fungi. Although several fungal genomes have been sequenced, annotated, and published, the organisms that have been examined are yeasts withrelatively small genomes. In sharp contrast, N. crassa contains about 10,000 protein-coding genes, approximately twice as many genes as the yeasts and only slightly fewer than the invertebrate animals. Analysis of this gene set suggests that several different processes have led to the differences in gene content between N. crassa and the yeasts. Evidence for the loss of genes in the yeasts and the acquisition of novel genes in Neurospora lineage is described, as well as details regarding the biological processes that have led to these changes. Analyses of the N. crassagenome sequence revealed the widest array of genome defense mechanisms known for any organism, and one of these defense mechanisms (RIP) appears to have blocked the productive duplication of genes. Since gene duplication is the most common pathway for the origin of novel genes, it seems likely that N. crassa will provide an excellent model system for understanding alternative ways in which novel genes arise. A number of unexpected genes were identified when the complete genome sequence was analyzed, indicating that N. crassa produces secondary metabolites, shares apparent “pathogenicity” genes with plant pathogens, and responds to environmental cues such as light in novel ways. The genome sequence for N. crassa is the first exciting step toward a detailed understanding of the biology of filamentous fungi, and it will allow fungal biologists to establish which features of the filamentous fungi are shared with non-fungal organisms and which features are unique.


This work was supported in part by the National Science Foundation (grant no. MCB-9874488 to M.A.N.).

* Corresponding author