On the dimension of composition posets

Michael Engen
University of Florida Gainesville, FL

Joint work with Vince Vatter
$48^{\text {th }}$ Southeastern International Conference on
Combinatorics, Graph Theory \& Computing March 6, 2017

Dimension

- Given a countable poset P, the dimension of P is the least positive integer k so that P embeds in \mathbb{R}^{k}.

Dimension

- Given a countable poset P, the dimension of P is the least positive integer k so that P embeds in \mathbb{R}^{k}.
- Dimension is monotone, meaning the dimension of a poset is at least that of each of its subposets.

Dimension

- Given a countable poset P, the dimension of P is the least positive integer k so that P embeds in \mathbb{R}^{k}.
- Dimension is monotone, meaning the dimension of a poset is at least that of each of its subposets.
- The poset of words of a length k over the positive integers, \mathbb{P}^{k}, has dimension k.

The Composition Poset

The Composition Poset

- There is a natural way to extend the posets \mathbb{P}^{k} to include relations between words of different lengths, called the generalized subword order, and we refer to the words now as compositions.

The Composition Poset

- There is a natural way to extend the posets \mathbb{P}^{k} to include relations between words of different lengths, called the generalized subword order, and we refer to the words now as compositions.
- Given two compositions, we say $a(1) a(2) \ldots a(k) \leqslant b(1) b(2) \ldots b(n)$ if there are indices $1 \leqslant \mathfrak{i}_{1}<\mathfrak{i}_{2}<\cdots<\mathfrak{i}_{k} \leqslant n$ such that $a(j) \leqslant b\left(\mathfrak{i}_{j}\right)$ for each \mathfrak{j}.

The Composition Poset

- There is a natural way to extend the posets \mathbb{P}^{k} to include relations between words of different lengths, called the generalized subword order, and we refer to the words now as compositions.
- Given two compositions, we say $a(1) a(2) \ldots a(k) \leqslant b(1) b(2) \ldots b(n)$ if there are indices $1 \leqslant \mathfrak{i}_{1}<\mathfrak{i}_{2}<\cdots<\mathfrak{i}_{k} \leqslant n$ such that $a(j) \leqslant b\left(\mathfrak{i}_{j}\right)$ for each \mathfrak{j}.
- This order can be visualized using skyline diagrams!

Downsets

Downsets

- A possibly infinite composition is a word over $\mathbb{P} \cup\{\omega\} \cup\left\{n^{\omega}: n \in \mathbb{P}\right\} \cup\left\{\omega^{\omega}\right\}$, where

Downsets

- A possibly infinite composition is a word over $\mathbb{P} \cup\{\omega\} \cup\left\{n^{\omega}: n \in \mathbb{P}\right\} \cup\left\{\omega^{\omega}\right\}$, where
- ω stands for an infinite part,

Downsets

- A possibly infinite composition is a word over $\mathbb{P} \cup\{\omega\} \cup\left\{n^{\omega}: n \in \mathbb{P}\right\} \cup\left\{\omega^{\omega}\right\}$, where
- ω stands for an infinite part,
- n^{ω} stands for an infinite number of parts all equal to n, and

Downsets

- A possibly infinite composition is a word over $\mathbb{P} \cup\{\omega\} \cup\left\{n^{\omega}: n \in \mathbb{P}\right\} \cup\left\{\omega^{\omega}\right\}$, where
- ω stands for an infinite part,
- n^{ω} stands for an infinite number of parts all equal to n, and
- ω^{ω} stands for an infinite number of infinite parts.

Downsets

- A possibly infinite composition is a word over $\mathbb{P} \cup\{\omega\} \cup\left\{n^{\omega}: n \in \mathbb{P}\right\} \cup\left\{\omega^{\omega}\right\}$, where
- ω stands for an infinite part,
- n^{ω} stands for an infinite number of parts all equal to n, and
- ω^{ω} stands for an infinite number of infinite parts.
- Given a possibly infinite composition u, the age of u is the set of (finite) compositions which embed into it.

Downsets

- A possibly infinite composition is a word over $\mathbb{P} \cup\{\omega\} \cup\left\{n^{\omega}: n \in \mathbb{P}\right\} \cup\left\{\omega^{\omega}\right\}$, where
- ω stands for an infinite part,
- n^{ω} stands for an infinite number of parts all equal to n, and
- ω^{ω} stands for an infinite number of infinite parts.
- Given a possibly infinite composition u, the age of u is the set of (finite) compositions which embed into it.
- For example, we say $114221 \in \operatorname{Age}\left(1^{\omega} \omega 2131^{\omega}\right)$ as exhibited by the embedding below.

114221

Lower Bounds on Dimension

Lower Bounds on Dimension

- Crown of dimension n :

Examples

- Age(ω) has dimension 1.

Examples

- Age(ω) has dimension 1.
- Age $(\omega \omega)$ has dimension 3.

Examples

- Age(ω) has dimension 1.
- Age $(\omega \omega)$ has dimension 3.
- Age $(\omega \omega)$ has dimension at least 3:

Examples

- Age($\omega \omega \omega$)

Examples

- Age ($\omega \omega \omega$)
- Infinite dimensional!

Examples

- Age($\omega \omega \omega$)
- Infinite dimensional!
- $n \geqslant 5$, crown of dimension $n-3$:

Theorem

Theorem

Theorem

A downset of compositions in the generalized subword order is finite dimensional if and only if it does not contain Age($\omega \omega \omega$), Age ($\left.1^{\omega} 21^{\omega} 21^{\omega}\right)$, Age $\left(\omega 1^{\omega} \omega 1^{\omega}\right)$, or Age $\left(1^{\omega} \omega 1^{\omega} \omega\right)$.

Age $\left(1^{\omega} 21^{\omega} 21^{\omega}\right)$

- $n \geqslant 5$, crown of dimension $n-3$:

$\operatorname{Age}\left(\omega 1^{\omega} \omega 1^{\omega}\right)$

- $n \geqslant 3$, crown of dimension $n-1$:

A Brief Sketch

A Brief Sкetch

- Higman's Lemma and a theorem of Fraïssé show that every downset of compositions is the finite union of ages.

A Brief Sketch

- Higman's Lemma and a theorem of Fraïssé show that every downset of compositions is the finite union of ages.
- The union of two finite dimensional downsets is finite dimensional.

A Brief Sкetch

- Higman's Lemma and a theorem of Fraïssé show that every downset of compositions is the finite union of ages.
- The union of two finite dimensional downsets is finite dimensional.
- Maximal finite dimensional ages:
- Age $\left(a \omega b 1^{\omega} c 1^{\omega} d \omega e\right)$
- Age(a1 ${ }^{\omega}$ b $\left.\omega c \omega d 1^{\omega} e\right)$

Open Questions

Open Questions

Let P be your favorite infinite poset.
Question. What are the finite dimensional downsets of P ?

Open Questions

Let P be your favorite infinite poset.
Question. What are the finite dimensional downsets of P?
Example. Let P be the poset of integer partitions, whose order is simply the one in Young's lattice, namely containment of Ferrers diagrams. We establish the following result.

Open Questions

Let P be your favorite infinite poset.
Question. What are the finite dimensional downsets of P? Example. Let P be the poset of integer partitions, whose order is simply the one in Young's lattice, namely containment of Ferrers diagrams. We establish the following result.

Theorem

A downset of integer partitions is finite dimensional if and only if it does not contain every partition.

Open Questions

Let P be your favorite infinite poset.
Question. What are the finite dimensional downsets of P? Example. Let P be the poset of integer partitions, whose order is simply the one in Young's lattice, namely containment of Ferrers diagrams. We establish the following result.

Theorem

A downset of integer partitions is finite dimensional if and only if it does not contain every partition.

Thank you.

