On the dimension of composition posets

Michael Engen
University of Florida
Gainesville, FL

Joint work with Vince Vatter

48th Southeastern International Conference on Combinatorics, Graph Theory & Computing
March 6, 2017
Dimension

- Given a countable poset P, the *dimension* of P is the least positive integer k so that P embeds in \mathbb{R}^k.
Dimension

- Given a countable poset P, the *dimension* of P is the least positive integer k so that P embeds in \mathbb{R}^k.
- Dimension is monotone, meaning the dimension of a poset is at least that of each of its subposets.
Dimension

- Given a countable poset \(P \), the *dimension* of \(P \) is the least positive integer \(k \) so that \(P \) embeds in \(\mathbb{R}^k \).
- Dimension is monotone, meaning the dimension of a poset is at least that of each of its subposets.
- The poset of words of a length \(k \) over the positive integers, \(\mathbb{P}^k \), has dimension \(k \).
The Composition Poset
The Composition Poset

- There is a natural way to extend the posets P^k to include relations between words of different lengths, called the \textit{generalized subword order}, and we refer to the words now as compositions.
The Composition Poset

- There is a natural way to extend the posets \mathbb{P}^k to include relations between words of different lengths, called the *generalized subword order*, and we refer to the words now as compositions.

- Given two compositions, we say $a(1)a(2)\ldots a(k) \leq b(1)b(2)\ldots b(n)$ if there are indices $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $a(j) \leq b(i_j)$ for each j.

▶ This order can be visualized using *skyline diagrams*!
The Composition Poset

- There is a natural way to extend the posets \mathbb{P}^k to include relations between words of different lengths, called the *generalized subword order*, and we refer to the words now as compositions.

- Given two compositions, we say $a(1)a(2)\ldots a(k) \leq b(1)b(2)\ldots b(n)$ if there are indices $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $a(j) \leq b(i_j)$ for each j.

- This order can be visualized using *skyline diagrams*!

![Skyline Diagrams](https://via.placeholder.com/150)
DOWNSETS
DOWNSETS

A possibly infinite composition is a word over $\mathbb{P} \cup \{\omega\} \cup \{n^\omega : n \in \mathbb{P}\} \cup \{\omega^\omega\}$, where
DOWNSETS

- A possibly infinite composition is a word over $\mathbb{P} \cup \{\omega\} \cup \{n^\omega : n \in \mathbb{P}\} \cup \{\omega^\omega\}$, where
 - ω stands for an infinite part,
DOWNSETS

- A *possibly infinite composition* is a word over $\mathbb{P} \cup \{\omega\} \cup \{n^\omega : n \in \mathbb{P}\} \cup \{\omega^\omega\}$, where
 - ω stands for an infinite part,
 - n^ω stands for an infinite number of parts all equal to n, and
DOWNSETS

- A possibly infinite composition is a word over \(P \cup \{\omega\} \cup \{n^\omega : n \in P\} \cup \{\omega^\omega\} \), where
 - \(\omega \) stands for an infinite part,
 - \(n^\omega \) stands for an infinite number of parts all equal to \(n \), and
 - \(\omega^\omega \) stands for an infinite number of infinite parts.
DOWNSETS

- A possibly infinite composition is a word over \(\mathbb{P} \cup \{\omega\} \cup \{n^\omega : n \in \mathbb{P}\} \cup \{\omega^\omega\} \), where
 - \(\omega \) stands for an infinite part,
 - \(n^\omega \) stands for an infinite number of parts all equal to \(n \), and
 - \(\omega^\omega \) stands for an infinite number of infinite parts.

- Given a possibly infinite composition \(u \), the age of \(u \) is the set of (finite) compositions which embed into it.
DOWNSETS

- A possibly infinite composition is a word over
P \cup \{\omega\} \cup \{n^{\omega} : n \in \mathbb{P}\} \cup \{\omega^\omega\}, where
 - \omega stands for an infinite part,
 - n^{\omega} stands for an infinite number of parts all equal to n, and
 - \omega^\omega stands for an infinite number of infinite parts.

- Given a possibly infinite composition \(u\), the age of \(u\) is the set of (finite) compositions which embed into it.

- For example, we say \(114221 \in \text{Age}(1^{\omega} \omega 2131^{\omega})\) as exhibited by the embedding below.
Lower Bounds on Dimension
LOWER BOUNDS ON DIMENSION

- Crown of dimension n:
Examples

- $\text{Age}(\omega)$ has dimension 1.
Examples

- $\text{Age}(\omega)$ has dimension 1.
- $\text{Age}(\omega\omega)$ has dimension 3.
Examples

- $\text{Age}(\omega)$ has dimension 1.
- $\text{Age}(\omega \omega)$ has dimension 3.
 - $\text{Age}(\omega \omega)$ has dimension at least 3:

```
13
21

31
12

22
3
```
Examples

▶ Age($\omega\omega\omega$)
Examples

- Age(ωωω)
 - Infinite dimensional!
Examples

- Age(ωωω)
 - Infinite dimensional!
 - $n \geq 5$, crown of dimension $n - 3$:

\[
\begin{align*}
1n(n - 3) & \quad 2n(n - 4) & \quad 3n(n - 5) & \quad \cdots & \quad (n - 3)n1 \\
2(n - 2) & \quad 3(n - 3) & \quad 4(n - 4) & \quad \cdots & \quad (n - 2)2
\end{align*}
\]
Theorem

A downset of compositions in the generalized subword order is finite dimensional if and only if it does not contain ω^ω, $\omega^\omega\omega\omega$, $\omega\omega\omega^\omega\omega$, or $\omega\omega\omega\omega\omega$.
THEOREM

Theorem
A downset of compositions in the generalized subword order is finite dimensional if and only if it does not contain \(\text{Age}(\omega \omega \omega) \), \(\text{Age}(1^\omega 2^\omega 1^\omega) \), \(\text{Age}(\omega 1^\omega \omega 1^\omega) \), or \(\text{Age}(1^\omega \omega 1^\omega \omega) \).
Age\((1^\omega 21^\omega 21^\omega)\)

- \(n \geq 5\), crown of dimension \(n - 3\):
Age(\(\omega_1^\omega \omega_1^\omega\))

- \(n \geq 3\), crown of dimension \(n - 1\):

\[
\begin{align*}
&11^0 n1^{n-1} \\
&21^n \\
&21^1 n1^{n-2} \\
&31^n \\
&31^2 n1^{n-3} \\
&41^{n-2} \\
&\cdots \\
&(n - 1)1^{n-2} n1^1 \\
&n1^2
\end{align*}
\]
A Brief Sketch

Higman's Lemma and a theorem of Fra¨ıss´e show that every downset of compositions is the finite union of ages.

The union of two finite dimensional downsets is finite dimensional.

Maximal finite dimensional ages:
A Brief Sketch

- Higman’s Lemma and a theorem of Fraïssé show that every downset of compositions is the finite union of ages.
Higman’s Lemma and a theorem of Fraïssé show that every downset of compositions is the finite union of ages.

The union of two finite dimensional downsets is finite dimensional.
A Brief Sketch

- Higman’s Lemma and a theorem of Fraïssé show that every downset of compositions is the finite union of ages.
- The union of two finite dimensional downsets is finite dimensional.
- Maximal finite dimensional ages:
 - $\text{Age}(a_1^\omega b_1^\omega c_1^\omega d_1^\omega e)$
 - $\text{Age}(a_1^\omega b_1^\omega c_1^\omega d_1^\omega e)$
Open Questions
Open Questions

Let P be your favorite infinite poset.

Question. What are the finite dimensional downsets of P?
Open Questions

Let P be your favorite infinite poset.

Question. What are the finite dimensional downsets of P?

Example. Let P be the poset of integer partitions, whose order is simply the one in Young’s lattice, namely containment of Ferrers diagrams. We establish the following result.
Open Questions

Let P be your favorite infinite poset.

Question. What are the finite dimensional downsets of P?

Example. Let P be the poset of integer partitions, whose order is simply the one in Young’s lattice, namely containment of Ferrers diagrams. We establish the following result.

Theorem

A downset of integer partitions is finite dimensional if and only if it does not contain every partition.
Open Questions

Let P be your favorite infinite poset.

Question. What are the finite dimensional downsets of P?

Example. Let P be the poset of integer partitions, whose order is simply the one in Young’s lattice, namely containment of Ferrers diagrams. We establish the following result.

Theorem

A downset of integer partitions is finite dimensional if and only if it does not contain every partition.

Thank you.