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» Given a countable poset P, the dimension of P is the least
positive integer k so that P embeds in R¥.

» Dimension is monotone, meaning the dimension of a poset
is at least that of each of its subposets.

» The poset of words of a length k over the positive integers,
IP¥, has dimension k.
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» There is a natural way to extend the posets IP* to include
relations between words of different lengths, called the
generalized subword order, and we refer to the words now as
compositions.

» Given two compositions, we say
a(Da(2)...a(k) < b(1)b(2)...b(n) if there are indices
1<1i <ip < -+ <ix <nsuch that a(j) < b(ij) for each j.

» This order can be visualized using skyline diagrams!
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DowNSETS

» A possibly infinite composition is a word over
Pu{wlu{n® : n e P}U{w®*}, where
» w stands for an infinite part,
» n stands for an infinite number of parts all equal to n, and
» w® stands for an infinite number of infinite parts.
» Given a possibly infinite composition u, the age of u is the
set of (finite) compositions which embed into it.

» For example, we say 114221 € Age(1“w2131%) as
exhibited by the embedding below.
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» Crown of dimension n:
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» Age(w) has dimension 1.
» Age(ww) has dimension 3.
» Age(ww) has dimension at least 3:

13 z 31 z 22
21 12 3
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» Age(www)
» Infinite dimensional!
» n > 5, crown of dimension n — 3:

In(n—3) 2n(n —4) 3n(n—>5) (n—3)nl1
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Theorem

A downset of compositions in the generalized subword order is finite
dimensional if and only if it does not contain Age(www),
Age(1°21°21%), Age(wl®wl®), or Age(1¥wl® w).



Age(1°21°21%)

» n > 5, crown of dimension n — 3:
1121m2173 __1221m21™4 _ 1321m21n0 T 1321211
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Age(wl®wl®)

» n > 3, crown of dimension n — 1:
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A BRIEF SKETCH

» Higman’s Lemma and a theorem of Fraissé show that
every downset of compositions is the finite union of ages.
» The union of two finite dimensional downsets is finite
dimensional.
» Maximal finite dimensional ages:
» Age(awbl®cl®dwe)
» Age(al®bwcwdl®e)
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OPEN QUESTIONS
Let P be your favorite infinite poset.

Question. What are the finite dimensional downsets of P?
Example. Let P be the poset of integer partitions, whose order
is simply the one in Young’s lattice, namely containment of
Ferrers diagrams. We establish the following result.

Theorem
A downset of integer partitions is finite dimensional if and only if it
does not contain every partition.

Thank you.
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