On the dimension of composition posets

Michael Engen University of Florida

Gainesville, FL

Joint work with Vince Vatter

48th Southeastern International Conference on Combinatorics, Graph Theory & Computing March 6, 2017

Background	The Easy Direction	The Other Direction	Conclusion
●000000	00	0	o
Dimension			

► Given a countable poset P, the *dimension* of P is the least positive integer k so that P embeds in ℝ^k.

Background	The Easy Direction	The Other Direction	Conclusion
000000		0	0

DIMENSION

- ► Given a countable poset P, the *dimension* of P is the least positive integer k so that P embeds in ℝ^k.
- Dimension is monotone, meaning the dimension of a poset is at least that of each of its subposets.

Dimension

- ► Given a countable poset P, the *dimension* of P is the least positive integer k so that P embeds in ℝ^k.
- Dimension is monotone, meaning the dimension of a poset is at least that of each of its subposets.
- ► The poset of words of a length k over the positive integers,
 P^k, has dimension k.

Background	THE EASY DIRECTION	The Other Direction	Conclusion
000000	00	0	0

Background	The Easy Direction	The Other Direction	Conclusion
000000	00	0	0

► There is a natural way to extend the posets P^k to include relations between words of different lengths, called the *generalized subword order*, and we refer to the words now as compositions.

Background	The Easy Direction	THE OTHER DIRECTION	Conclusion
000000	00	0	0

- ► There is a natural way to extend the posets P^k to include relations between words of different lengths, called the *generalized subword order*, and we refer to the words now as compositions.
- Given two compositions, we say $a(1)a(2) \dots a(k) \leq b(1)b(2) \dots b(n)$ if there are indices $1 \leq i_1 < i_2 < \dots < i_k \leq n$ such that $a(j) \leq b(i_j)$ for each j.

Background	The Easy Direction	The Other Direction	Conclusion
000000	00	0	0

- ► There is a natural way to extend the posets P^k to include relations between words of different lengths, called the *generalized subword order*, and we refer to the words now as compositions.
- Given two compositions, we say $a(1)a(2) \dots a(k) \leq b(1)b(2) \dots b(n)$ if there are indices $1 \leq i_1 < i_2 < \dots < i_k \leq n$ such that $a(j) \leq b(i_j)$ for each j.
- ► This order can be visualized using *skyline diagrams*!

Background	The Easy Direction	THE OTHER DIRECTION	Conclusion
000000	00	0	0

Background	The Easy Direction	The Other Direction	Conclusion
000000	00	0	O
Downsets			

A possibly infinite composition is a word over ℙ ∪ {ω} ∪ {n^ω : n ∈ ℙ} ∪ {ω^ω}, where

Background	The Easy Direction	The Other Direction	Conclusion
000000	00	0	o
D			

- A *possibly infinite composition* is a word over $\mathbb{P} \cup \{\omega\} \cup \{n^{\omega} : n \in \mathbb{P}\} \cup \{\omega^{\omega}\}$, where
 - *ω* stands for an infinite part,

Background	The Easy Direction	The Other Direction	Conclusion
0000000	00	0	0
Ð			

- A *possibly infinite composition* is a word over $\mathbb{P} \cup \{\omega\} \cup \{n^{\omega} : n \in \mathbb{P}\} \cup \{\omega^{\omega}\}$, where
 - *ω* stands for an infinite part,
 - n^{ω} stands for an infinite number of parts all equal to n, and

Background	The Easy Direction	The Other Direction	Conclusion
000000	00	O	0
D			

- A *possibly infinite composition* is a word over $\mathbb{P} \cup \{\omega\} \cup \{n^{\omega} : n \in \mathbb{P}\} \cup \{\omega^{\omega}\}$, where
 - ω stands for an infinite part,
 - n^{ω} stands for an infinite number of parts all equal to n, and
 - ω^{ω} stands for an infinite number of infinite parts.

Background	The Easy Direction	THE OTHER DIRECTION	Conclusion
000000	00	0	0
_			
DOWNEETC			

- A *possibly infinite composition* is a word over $\mathbb{P} \cup \{\omega\} \cup \{n^{\omega} : n \in \mathbb{P}\} \cup \{\omega^{\omega}\}$, where
 - ω stands for an infinite part,
 - n^{ω} stands for an infinite number of parts all equal to n, and
 - ω^{ω} stands for an infinite number of infinite parts.
- Given a possibly infinite composition u, the *age* of u is the set of (finite) compositions which embed into it.

Background	The Easy Direction	THE OTHER DIRECTION	Conclusion
000000	00	0	0
Desurran			
DOWNEETC			

- A *possibly infinite composition* is a word over $\mathbb{P} \cup \{\omega\} \cup \{n^{\omega} : n \in \mathbb{P}\} \cup \{\omega^{\omega}\}$, where
 - ω stands for an infinite part,
 - n^{ω} stands for an infinite number of parts all equal to n, and
 - ω^{ω} stands for an infinite number of infinite parts.
- Given a possibly infinite composition u, the *age* of u is the set of (finite) compositions which embed into it.
- For example, we say 114221 ∈ Age(1^ωω2131^ω) as exhibited by the embedding below.

Background	The Easy Direction	The Other Direction	Conclusion
0000000	00	0	0

Lower Bounds on Dimension

Background	The Easy Direction	The Other Direction	Conclusion
0000000	00	0	0

Lower Bounds on Dimension

• Crown of dimension n:

Background	The Easy Direction	THE OTHER DIRECTION	Conclusion
0000000	00	0	0

• Age(ω) has dimension 1.

Background	The Easy Direction	THE OTHER DIRECTION	Conclusion
0000000	00	0	0

- Age(ω) has dimension 1.
- Age($\omega\omega$) has dimension 3.

Background	The Easy Direction	The Other Direction	Conclusion
0000000	00	0	O

- Age(ω) has dimension 1.
- Age($\omega\omega$) has dimension 3.
 - Age($\omega\omega$) has dimension at least 3:

Background	THE EASY DIRECTION	THE OTHER DIRECTION	Conclusion
0000000	00	0	0

• Age($\omega\omega\omega$)

Background	The Easy Direction	The Other Direction	Conclusion
0000000	00	0	0

- Age($\omega\omega\omega$)
 - Infinite dimensional!

Background	The Easy Direction	The Other Direction	Conclusion
0000000		0	0

- ► Age(www)
 - Infinite dimensional!
 - $n \ge 5$, crown of dimension n 3:

BACKGROUND	The Easy Direction	The Other Direction	Conclusion
000000	00	0	0

Theorem

Background	The Easy Direction	THE OTHER DIRECTION	Conclusion
000000	00	0	0

Theorem

Theorem A downset of compositions in the generalized subword order is finite dimensional if and only if it does not contain Age($\omega\omega\omega$), Age($1^{\omega}21^{\omega}21^{\omega}$), Age($\omega1^{\omega}\omega1^{\omega}$), or Age($1^{\omega}\omega1^{\omega}\omega$).

Age $(1^{\omega}21^{\omega}21^{\omega})$

• $n \ge 5$, crown of dimension n - 3:

- - $n \ge 3$, crown of dimension n 1:

Background	The Easy Direction	THE OTHER DIRECTION	Conclusion
0000000	00		0

A Brief Sketch

A Brief Sketch

 Higman's Lemma and a theorem of Fraïssé show that every downset of compositions is the finite union of ages.

A BRIEF SKETCH

- Higman's Lemma and a theorem of Fraïssé show that every downset of compositions is the finite union of ages.
- The union of two finite dimensional downsets is finite dimensional.

A Brief Sketch

- Higman's Lemma and a theorem of Fraïssé show that every downset of compositions is the finite union of ages.
- The union of two finite dimensional downsets is finite dimensional.
- Maximal finite dimensional ages:
 - Age($awb1^wc1^wdwe$)
 - Age $(a1^{\omega}b\omega c\omega d1^{\omega}e)$

Background	The Easy Direction	The Other Direction	Conclusion
0000000	00	0	•

$O_{PEN} \ Questions$

Open Questions

Let P be your favorite infinite poset.

Question. What are the finite dimensional downsets of P?

Let P be your favorite infinite poset.

Question. What are the finite dimensional downsets of P? **Example.** Let P be the poset of integer partitions, whose order is simply the one in Young's lattice, namely containment of Ferrers diagrams. We establish the following result.

Let P be your favorite infinite poset.

Question. What are the finite dimensional downsets of P? **Example.** Let P be the poset of integer partitions, whose order is simply the one in Young's lattice, namely containment of Ferrers diagrams. We establish the following result.

Theorem

A downset of integer partitions is finite dimensional if and only if it does not contain every partition.

Let P be your favorite infinite poset.

Question. What are the finite dimensional downsets of P? **Example.** Let P be the poset of integer partitions, whose order is simply the one in Young's lattice, namely containment of Ferrers diagrams. We establish the following result.

Theorem

A downset of integer partitions is finite dimensional if and only if it does not contain every partition.

Thank you.