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Background The Easy Direction The Other Direction Conclusion

Dimension

I Given a countable poset P, the dimension of P is the least
positive integer k so that P embeds in Rk.

I Dimension is monotone, meaning the dimension of a poset
is at least that of each of its subposets.

I The poset of words of a length k over the positive integers,
Pk, has dimension k.
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The Composition Poset

I There is a natural way to extend the posets Pk to include
relations between words of different lengths, called the
generalized subword order, and we refer to the words now as
compositions.

I Given two compositions, we say
a(1)a(2) . . .a(k) 6 b(1)b(2) . . .b(n) if there are indices
1 6 i1 < i2 < · · · < ik 6 n such that a(j) 6 b(ij) for each j.

I This order can be visualized using skyline diagrams!

6
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Downsets

I A possibly infinite composition is a word over
P ∪ {ω} ∪ {nω : n ∈ P} ∪ {ωω}, where

I ω stands for an infinite part,
I nω stands for an infinite number of parts all equal to n, and
I ωω stands for an infinite number of infinite parts.

I Given a possibly infinite composition u, the age of u is the
set of (finite) compositions which embed into it.

I For example, we say 114221 ∈ Age(1ωω2131ω) as
exhibited by the embedding below.

6
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Lower Bounds on Dimension

I Crown of dimension n:

a1 a2 · · · an

b1 b2 · · · bn
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Examples

I Age(ω) has dimension 1.

I Age(ωω) has dimension 3.
I Age(ωω) has dimension at least 3:

21 12 3

13 31 22
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Examples

I Age(ωωω)

I Infinite dimensional!
I n > 5, crown of dimension n− 3:

2(n− 2) 3(n− 3) 4(n− 4) · · · (n− 2)2

1n(n− 3) 2n(n− 4) 3n(n− 5) · · · (n− 3)n1

7 of 12



Background The Easy Direction The Other Direction Conclusion

Examples

I Age(ωωω)
I Infinite dimensional!

I n > 5, crown of dimension n− 3:

2(n− 2) 3(n− 3) 4(n− 4) · · · (n− 2)2

1n(n− 3) 2n(n− 4) 3n(n− 5) · · · (n− 3)n1

7 of 12



Background The Easy Direction The Other Direction Conclusion

Examples

I Age(ωωω)
I Infinite dimensional!
I n > 5, crown of dimension n− 3:

2(n− 2) 3(n− 3) 4(n− 4) · · · (n− 2)2

1n(n− 3) 2n(n− 4) 3n(n− 5) · · · (n− 3)n1

7 of 12



Background The Easy Direction The Other Direction Conclusion

Theorem

Theorem
A downset of compositions in the generalized subword order is finite
dimensional if and only if it does not contain Age(ωωω),
Age(1ω21ω21ω), Age(ω1ωω1ω), or Age(1ωω1ωω).

8 of 12



Background The Easy Direction The Other Direction Conclusion

Theorem

Theorem
A downset of compositions in the generalized subword order is finite
dimensional if and only if it does not contain Age(ωωω),
Age(1ω21ω21ω), Age(ω1ωω1ω), or Age(1ωω1ωω).

8 of 12



Background The Easy Direction The Other Direction Conclusion

Age(1ω21ω21ω)

I n > 5, crown of dimension n− 3:

1221n−2 1321n−3 1421n−4 · · · 1n−2212

1121n21n−3 1221n21n−4 1321n21n−5 · · · 1n−321n211
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Age(ω1ωω1ω)

I n > 3, crown of dimension n− 1:

21n 31n−1 41n−2 · · · n12

110n1n−1 211n1n−2 312n1n−3 · · · (n− 1)1n−2n11
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A Brief Sketch

I Higman’s Lemma and a theorem of Fraı̈ssé show that
every downset of compositions is the finite union of ages.

I The union of two finite dimensional downsets is finite
dimensional.

I Maximal finite dimensional ages:
I Age(aωb1ωc1ωdωe)
I Age(a1ωbωcωd1ωe)
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Open Questions

Let P be your favorite infinite poset.

Question. What are the finite dimensional downsets of P?
Example. Let P be the poset of integer partitions, whose order
is simply the one in Young’s lattice, namely containment of
Ferrers diagrams. We establish the following result.

Theorem
A downset of integer partitions is finite dimensional if and only if it
does not contain every partition.

Thank you.
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