16. Use differentials to approximate $\sqrt{16.328}$.

Let $f(x)=\sqrt{x}$. We will use a tangent line to $f(x)$ at a point near $x=16.328$ to approximate the value of $f(16.328)=\sqrt{16.328}$. In this case, we know $f(16)=\sqrt{16}=4$, so this will be our nearby point.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\mathrm{d}}{\mathrm{dx}} x^{1 / 2} \\
& =\frac{1}{2 x^{1 / 2}},
\end{aligned}
$$

so $f^{\prime}(16)=\frac{1}{2 \sqrt{16}}=\frac{1}{8}$, and the tangent line to f at $x=16$ is

$$
y-4=\frac{1}{8}(x-16)
$$

or more simply

$$
y=\frac{1}{8} x+2 .
$$

This tangent line will give us a decent approximation of $f(16.328)$. Our approximation is $y=\frac{1}{8} \cdot 16.328+2=4.041$.
When compared to the actual value of $\sqrt{16.328}=4.0408 \ldots$, this is a pretty darn good approximation.
33. One side of a right triangle is known to be exactly twelve inches. The angle θ is measured to be π radians with a maximum possible error of ± 0.02 radians.
(a) Use differentials to estimate the maximum error in calculating the length of the opposite side x.
Let $x(\theta)=12 \tan (\theta)$ be the formula for x in terms of θ. To estimate the maximum error in calculating the x when θ varies by ± 0.02 radians, we'll use a tangent line to $x(\theta)$ at $\theta=\frac{\pi}{4}$. Here,

$$
x^{\prime}(\theta)=12 \sec ^{2}(\theta),
$$

and $x^{\prime}\left(\frac{\pi}{4}\right)=12 \sec ^{2}\left(\frac{\pi}{4}\right)=6$.
So the tangent line to $x(\theta)$ at $\theta=\frac{\pi}{4}$ (where our independent variable is θ and our dependent variable is x) is

$$
x-12=6\left(\theta-\frac{\pi}{4}\right)
$$

Now, if we look at the x values of our tangent line when $\theta=\frac{\pi}{4}+0.02$ and $\theta=\frac{\pi}{4}-0.02$, we find the variance of x is ± 0.48 inches.
(b) Find the maximum percentage error.

We simply divide our estimated error by the true value of $x\left(\frac{\pi}{4}\right)$:

$$
\frac{0.48}{x\left(\frac{\pi}{4}\right)} \cdot 100 \%=\frac{0.48}{12} \cdot 100 \%=4 \%
$$

