Name \qquad

Quiz 5

Put a box around your answer and show all work!

1. Using the limit definition, find the derivative of $f(x)=3 x^{2}-5$. We use the limit definition to find the derivative of f.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(3(x+h)^{2}-5\right)-\left(3 x^{2}-5\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2}+6 x h+3 h^{2}-5-3 x^{2}+5}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 x h+3 h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(6 x+3 h) \\
& =6 x .
\end{aligned}
$$

2. (Bonus) Evaluate

$$
\lim _{x \rightarrow-\infty}\left(x+\sqrt{x^{2}+4 x+5}\right) .
$$

Note that substitution gives $-\infty+\infty$, so we have to try harder. We first multiply by a form of 1 involving the conjugate of $x+$ $\sqrt{x^{2}+4 x+5}$:

$$
\begin{aligned}
x+\sqrt{x^{2}+4 x+5} & =\left(x+\sqrt{x^{2}+4 x+5}\right) \cdot \frac{x-\sqrt{x^{2}+4 x+5}}{x-\sqrt{x^{2}+4 x+5}} \\
& =\frac{x^{2}-\left(x^{2}+4 x+5\right)}{x-\sqrt{x^{2}+4 x+5}} \\
& =\frac{-4 x-5}{x-\sqrt{x^{2}+4 x+5}}
\end{aligned}
$$

Now, to compute our limit, we divide both the numerator and denominator by a form of x. Note that, since the values of x we care about are negative, we have $x=-\sqrt{x^{2}}$.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} x+\sqrt{x^{2}+4 x+5} & =\lim _{x \rightarrow-\infty} \frac{-4 x-5}{x-\sqrt{x^{2}+4 x+5}} \\
& =\lim _{x \rightarrow-\infty} \frac{-4 x-5}{x-\sqrt{x^{2}+4 x+5}} \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow-\infty} \frac{-4-\frac{5}{x}}{1-\frac{1}{\left(-\sqrt{\left.x^{2}\right)}\right.} \sqrt{x^{2}+4 x+5}} \\
& =\lim _{x \rightarrow-\infty} \frac{-4-\frac{5}{x}}{1+\sqrt{1+\frac{4}{x}+\frac{5}{x^{2}}}} \\
& =\frac{-4}{1+\sqrt{1}}=\sqrt{-2 .} .
\end{aligned}
$$

3. Find the derivatives of the given functions:
(a) $f(x)=\frac{x^{2}-4}{x-2}$

We factor the numerator, cancel terms, and take the derivative of what remains:

$$
\begin{aligned}
\frac{d}{d x} f(x) & =\frac{d}{d x} \frac{x^{2}-4}{x-2} \\
& =\frac{d}{d x} \frac{(x-2)(x+2)}{x-2} \\
& =\frac{d}{d x}(x+2) \\
& =1 .
\end{aligned}
$$

(b) $f(x)=e^{x} \cdot x^{3}$

We use the product rule:

$$
\begin{aligned}
\frac{d}{d x} f(x) & =\frac{d}{d x} e^{x} \cdot x^{3} \\
& =e^{x} \frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}\left(e^{x}\right) x^{3} \\
& =e^{x} \cdot 3 x^{2}+e^{x} \cdot x^{3} \\
& =e^{x} \cdot x^{2}(3+x)
\end{aligned}
$$

(c) $f(x)=x^{\sin (\pi / 2)}$

Note that $\sin (\pi / 2)=1$.

$$
\begin{aligned}
\frac{d}{d x} f(x) & =\frac{d}{d x} x^{1} \\
& =1 .
\end{aligned}
$$

(d) $f(x)=-\frac{x}{e^{x}}$

We use the quotient rule:

$$
\begin{aligned}
\frac{d}{d x} f(x) & =-\frac{d}{d x} \frac{x}{e^{x}} \\
& =-\frac{e^{x} \frac{d}{d x}(x)-x \frac{d}{d x}\left(e^{x}\right)}{\left(e^{x}\right)^{2}} \\
& =-\frac{e^{x}-x \cdot e^{x}}{\left(e^{x}\right)^{2}} \\
& =-\frac{e^{x}(1-x)}{\left(e^{x}\right)^{2}} \\
& =-\frac{1-x}{e^{x}} \\
& =\frac{x-1}{e^{x}}
\end{aligned}
$$

Name \qquad

Quiz 5

Put a box around your answer and show all work!

1. Using the limit definition, find the derivative of $f(x)=5 x^{2}+3$. We use the limit definition to find the derivative of f.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(5(x+h)^{2}+3\right)-\left(5 x^{2}+3\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 x^{2}+10 x h+5 h^{2}+3-5 x^{2}-3}{h} \\
& =\lim _{h \rightarrow 0} \frac{10 x h+5 h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(10 x+5 h) \\
& =10 x .
\end{aligned}
$$

2. (Bonus) Evaluate

$$
\lim _{x \rightarrow-\infty}\left(x+\sqrt{x^{2}+4 x+5}\right) .
$$

Note that substitution gives $-\infty+\infty$, so we have to try harder. We first multiply by a form of 1 involving the conjugate of $x+$ $\sqrt{x^{2}+4 x+5}$:

$$
\begin{aligned}
x+\sqrt{x^{2}+4 x+5} & =\left(x+\sqrt{x^{2}+4 x+5}\right) \cdot \frac{x-\sqrt{x^{2}+4 x+5}}{x-\sqrt{x^{2}+4 x+5}} \\
& =\frac{x^{2}-\left(x^{2}+4 x+5\right)}{x-\sqrt{x^{2}+4 x+5}} \\
& =\frac{-4 x-5}{x-\sqrt{x^{2}+4 x+5}}
\end{aligned}
$$

Now, to compute our limit, we divide both the numerator and denominator by a form of x. Note that, since the values of x we care about are negative, we have $x=-\sqrt{x^{2}}$.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} x+\sqrt{x^{2}+4 x+5} & =\lim _{x \rightarrow-\infty} \frac{-4 x-5}{x-\sqrt{x^{2}+4 x+5}} \\
& =\lim _{x \rightarrow-\infty} \frac{-4 x-5}{x-\sqrt{x^{2}+4 x+5}} \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow-\infty} \frac{-4-\frac{5}{x}}{1-\frac{1}{\left(-\sqrt{\left.x^{2}\right)}\right.} \sqrt{x^{2}+4 x+5}} \\
& =\lim _{x \rightarrow-\infty} \frac{-4-\frac{5}{x}}{1+\sqrt{1+\frac{4}{x}+\frac{5}{x^{2}}}} \\
& =\frac{-4}{1+\sqrt{1}}=-2 .
\end{aligned}
$$

3. Find the derivatives of the given functions:
(a) $f(x)=\frac{e^{x}}{x}$

We use the quotient rule:

$$
\begin{aligned}
\frac{d}{d x} f(x) & =\frac{d}{d x} \frac{e^{x}}{x} \\
& =\frac{x \frac{d}{d x}\left(e^{x}\right)-e^{x} \frac{d}{d x}(x)}{x^{2}} \\
& =\frac{x \cdot e^{x}-e^{x}}{x^{2}} \\
& =\frac{(x-1) e^{x}}{x^{2}}
\end{aligned}
$$

(b) $f(x)=x^{\cos (\pi)}$

Note that $\cos (\pi)=-1$.

$$
\begin{aligned}
\frac{d}{d x} f(x) & =\frac{d}{d x} x^{-1} \\
& =-x^{-2} .
\end{aligned}
$$

(c) $f(x)=x^{2} \cdot e^{x}$

We use the product rule:

$$
\begin{aligned}
\frac{d}{d x} f(x) & =x^{2} \frac{d}{d x}\left(e^{x}\right)+e^{x} \frac{d}{d x}\left(x^{2}\right) \\
& =x^{2} \cdot e^{x}+e^{x} \cdot 2 x \\
& =e^{x} \cdot x(x+2) .
\end{aligned}
$$

(d) $f(x)=\frac{x^{2}-9}{x+3}$

We factor the numerator, cancel terms, and take the derivative of what remains.

$$
\begin{aligned}
\frac{d}{d x} f(x) & =\frac{d}{d x} \frac{x^{2}-9}{x+3} \\
& =\frac{d}{d x} \frac{(x-3)(x+3)}{x+3} \\
& =\frac{d}{d x}(x-3) \\
& =1 .
\end{aligned}
$$

