Quiz 2

1. Let $f(x)=\frac{\sqrt{e^{x}-1}}{x}$. Find the domain of f in interval notation. Since we have a square root involved, we must force the expression inside the square root $e^{x}-1$ to be at least 0 :

$$
\begin{aligned}
e^{x}-1 & \geq 0 \\
e^{x} & \geq 1 .
\end{aligned}
$$

We may now take the natural logarithm of either side to get

$$
\begin{aligned}
e^{x} & \geq 1 \Longrightarrow \\
x & \geq \ln 1 \Longrightarrow \\
x & \geq 0 .
\end{aligned}
$$

We must also assert that the denominator, x, is not 0 , so our solution set is everything to the right of 0 :
$(0, \infty)$
2. Find the solution set:

$$
2 \log (x+1)-\log (2 x+1)=0
$$

First, we note that any solution we give must lie in the domain of the problem, $[-1 / 2, \infty)$. Now, we may move one term to the righthand side and use logarithm rules to simplify:

$$
\begin{aligned}
2 \log (x+1)-\log (2 x+1) & =0 \Longrightarrow \\
2 \log (x+1) & =\log (2 x+1) \Longrightarrow \\
\log \left((x+1)^{2}\right) & =\log (2 x+1) .
\end{aligned}
$$

We may ' e ' both sides to cancel logs, meaning

$$
\begin{aligned}
\log \left((x+1)^{2}\right) & =\log (2 x+1) \Longrightarrow \\
e^{\log \left((x+1)^{2}\right)} & =e^{\log (2 x+1)} \Longrightarrow \\
(x+1)^{2} & =(2 x+1) .
\end{aligned}
$$

Now, we've reduced this to a simple quadratic equation, which we can readily solve:

$$
\begin{aligned}
(x+1)^{2} & =(2 x+1) \Longrightarrow \\
x^{2}+2 x+1 & =2 x+1 \Longrightarrow \\
x^{2} & =0 \Longrightarrow \\
x & =0
\end{aligned}
$$

This is in our domain, so we are done.

$$
x=0
$$

3. Use a triangle to simplify the expression $\tan \left(\cos ^{-1}(2 x)\right)$.

Let $\theta=\cos ^{-1}(2 x)$. Since $\cos (\theta)=2 x$, we may fill in a triangle to calculate $\tan (\theta)$.

Once we've filled in our triangle using $\cos (\theta)=2 x$ and the Pythagorean Theorem, we see that $\tan (\theta)=\frac{\sqrt{1-4 x^{2}}}{2 x}$.
$\frac{\sqrt{1-4 x^{2}}}{2 x}$

Name Solution

Quiz 2

1. Let $f(x)=\log \left(\sqrt{x^{2}-1}\right)$. Find the domain of f in interval notation. Since a logarithm is involved, we must ensure its argument $\sqrt{x^{2}-1}$ is positive. A square root is positive exactly when its inside is positive, so we must have

$$
\begin{gathered}
x^{2}-1>0 \Longrightarrow \\
x^{2}>1 \Longrightarrow \\
|x|>1,
\end{gathered}
$$

which in interval notation is $(-\infty,-1) \cup(1, \infty)$. We must also check that the 'inside' of the square root, $x^{2}-1$ is at least 0 , but since we already asserted $x^{2}-1$ must be positive, we are done.
$(-\infty,-1) \cup(1, \infty)$
2. Find the solution set:

$$
2 \log (x)-\log (3 x+4)=0
$$

We use the rules of logarithms to simplify:

$$
\begin{aligned}
2 \log (x)-\log (3 x+4) & =0 \Longrightarrow \\
\log \left(x^{2}\right)-\log (3 x+4) & =0 \Longrightarrow \\
\log \left(\frac{x^{2}}{3 x+4}\right) & =0 \Longrightarrow \\
\frac{x^{2}}{3 x+4} & =10^{0} \Longrightarrow \\
\frac{x^{2}}{3 x+4} & =1 \Longrightarrow \\
x^{2} & =3 x+4 \Longrightarrow \\
x^{2}-3 x-4 & =0 \Longrightarrow \\
(x-4)(x+1) & =0
\end{aligned}
$$

Now, x is either -1 or 4 . The domain of our original expression is $(0, \infty)$, so 4 is our only solution.
$x=4$
3. Use a triangle to simplify the expression $\cot \left(\sin ^{-1}(3 x)\right)$.

Let $\theta=\sin ^{-1}(3 x)$. Since $\sin (\theta)=3 x$, we may fill in a triangle to calculate $\cot (\theta)$.

Once we've filled in our triangle using $\sin (\theta)=3 x$ and the Pythagorean Theorem, we see that $\cot (\theta)=\frac{\sqrt{1-9 x^{2}}}{3 x}$.

$$
\frac{\sqrt{1-9 x^{2}}}{3 x}
$$

