## Name Solution

## Quiz 3

Put a box around your answer, please and thank you!

1. An escaping balloon has height $y(t)=4 t^{2}+4$ after $t$ seconds have passed. Find a formula for the average velocity on $[1,1+h]$.
We use the formula for the average rate of change of a function over an interval.
average velocity over $[1,1+h]=\frac{y(1+h)-y(1)}{(1+h)-1}$

$$
\begin{aligned}
& =\frac{\left(4(1+h)^{2}+4\right)-\left(4(1)^{2}+4\right)}{h} \\
& =\frac{4+8 h+4 h^{2}+4-(4+4)}{h} \\
& =\frac{8 h+4 h^{2}}{h} \\
& =8+4 h .
\end{aligned}
$$

This is our average velocity!

$$
8+4 h
$$

2. Sketch the graph of an even function $f$ such that

$$
\lim _{x \rightarrow 4} f(x)=-4
$$

There are many good solutions here, but we give two easy ones:


3. Evaluate

$$
\lim _{x \rightarrow 2} \frac{\frac{1}{x}-\frac{1}{2}}{2-x}
$$

We simplify the given fraction and compute the remaining (simple) limit.

$$
\begin{aligned}
\frac{\frac{1}{x}-\frac{1}{2}}{2-x} & =\frac{\frac{1}{x}-\frac{1}{2}}{2-x} \cdot \frac{2 x}{2 x} \\
& =\frac{2-x}{(2-x)(2 x)} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now, computing our limit is easy:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\frac{1}{x}-\frac{1}{2}}{2-x} & =\lim _{x \rightarrow 2} \frac{1}{2 x} \\
& =\frac{1}{2(2)} \\
& =\frac{1}{4}
\end{aligned}
$$

$\frac{1}{4}$

## Name Solution

## Quiz 3

Put a box around your answer, please and thank you!

1. An falling boulder has height $y(t)=-4 t^{2}-4$ after $t$ seconds have passed. Find a formula for the average velocity on $[1,1+h]$.
We use the formula for the average rate of change of a function over an interval.
average velocity over $[1,1+h]=\frac{y(1+h)-y(1)}{(1+h)-1}$

$$
\begin{aligned}
& =\frac{\left(-4(1+h)^{2} 4\right)-\left(-4(1)^{2}-4\right)}{h} \\
& =\frac{-4-8 h-4 h^{2}-4-(-4-4)}{h} \\
& =\frac{-8 h-4 h^{2}}{h} \\
& =-8-4 h .
\end{aligned}
$$

This is our average velocity!
$-8-4 h$
2. Sketch the graph of an odd function $g$ such that

$$
\lim _{x \rightarrow-2} g(x)=1
$$

There are many good solutions here, but we give two easy ones:


3. Evaluate

$$
\lim _{x \rightarrow 2} \frac{\frac{2}{x}-\frac{x}{2}}{4-x^{2}}
$$

We simplify the fraction and compute the remaining (simple) limit.

$$
\begin{aligned}
\frac{\frac{2}{x}-\frac{x}{2}}{4-x^{2}} & =\frac{\frac{2}{x}-\frac{x}{2}}{4-x^{2}} \cdot \frac{2 x}{2 x} \\
& =\frac{4-x^{2}}{\left(4-x^{2}\right)(2 x)} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now, computing our limit is easy:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\frac{2}{x}-\frac{x}{2}}{4-x^{2}} & =\lim _{x \rightarrow 2} \frac{1}{2 x} \\
& =\frac{1}{2(2)} \\
& =\frac{1}{4}
\end{aligned}
$$

$\frac{1}{4}$

