Quiz 4

Put a box around your answer and show all work!

1. Determine the value of K so that $f(x)$ is continuous at $x=2$:

$$
f(x)= \begin{cases}\sin \left(\pi x^{2}\right) & x \leq 2 \\ \pi x^{2}-K & x>2\end{cases}
$$

We compute the limit of f as x approaches 2 from the left and from the right and assign a value to K so that these limits agree.

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}} \sin \left(\pi x^{2}\right) \\
& =\sin \left(\pi 2^{2}\right) \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}} \pi x^{2}-K \\
& =\pi 2^{2}-K \\
& =4 \pi-K .
\end{aligned}
$$

Now, for f to be continuous at $x=2$, these limits should agree, meaning $0=4 \pi-K$. Thus $K=4 \pi$.
$K=4 \pi$
2. Use the Intermediate Value Theorem to show that there is a solution to $\sin (x)=x-1$ in the interval $[0, \pi]$.
The Intermediate Value Theorem says that if a function f is continuous on $[a, b]$, then f attains every value between $f(a)$ and $f(b)$ on $[a, b]$. Thus, if $f(x)=\sin (x)-(x-1)=\sin (x)-x+1$, then f is continuous on $[0, \pi]$. Now, $f(0)=1>0$ and $f(\pi)=1-\pi<0$,
so f must take on the value 0 at some c in $[0, \pi]$, meaning $f(c)=$ $\sin (c)-(c-1)=0$. Thus $\sin (c)=c-1$, and we are done.
3. Evaluate:

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{2 x}
$$

Given that the limit of $\frac{\sin (x)}{x}$ is 1 as $x \rightarrow 0$, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (x)}{2 x} & =\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \cdot \frac{1}{2} \\
& =1 \cdot \frac{1}{2} \\
& =\frac{1}{2} .
\end{aligned}
$$

$\frac{1}{2}$

Quiz 4

Put a box around your answer and show all work!

1. Determine the value of K so that $f(x)$ is continuous at $x=0$:

$$
f(x)=\left\{\begin{array}{cl}
\log (x+K) & x \leq 0 \\
2 x+2 & x>0
\end{array}\right.
$$

We compute the limit of f as x approaches 0 from the left and from the right and assign a value to K so that these limits agree.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}} \log (x+K) \\
& =\log (K),
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}} 2 x+2 \\
& =2 .
\end{aligned}
$$

Now, for f to be continuous at $x=0$, these limits should agree, meaning $2=\log (K)$, and thus $K=10^{2}=100$.
$K=100$
2. Use the Intermediate Value Theorem to show that there is a solution to $\cos (x)=3 x$ in the interval $[0, \pi]$.
The Intermediate Value Theorem says that if a function f is continuous on $[a, b]$, then f attains every value between $f(a)$ and $f(b)$ on $[a, b]$. Thus, if $f(x)=\cos (x)-3 x$, then f is continuous on $[0, \pi]$. Now, $f(0)=\cos (0)=1>0$, and $f(\pi)=\cos (\pi)-3 \pi=$ $-1-3 \pi<0$, so f must take on the value 0 at some c in $[0, \pi]$, meaning $f(c)=\cos (c)-3 c=0$. Thus $\cos (c)=3 c$, and we are done.
3. Evaluate:

$$
\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x}
$$

We know the limit of $\frac{\sin (x)}{x}$ is 1 as $x \rightarrow 0$, and as a consequence we know the limit of $\frac{\sin (2 x)}{2 x}$ is 1 as $x \rightarrow 0$ as well. Thus

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x} & =\lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x} \cdot \frac{2}{1} \\
& =1 \cdot \frac{2}{1} \\
& =2
\end{aligned}
$$

2

