Name Solution

Quiz 4

Put a box around your answer and show all work!

1. Determine the value of K so that f(x) is continuous at x = 2:

$$f(x) = \begin{cases} \sin(\pi x^2) & x \le 2\\ \pi x^2 - K & x > 2 \end{cases}$$

We compute the limit of f as x approaches 2 from the left and from the right and assign a value to K so that these limits agree.

$$\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \sin(\pi x^2)$$
$$= \sin(\pi 2^2)$$
$$= 0,$$

and

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \pi x^2 - K$$
$$= \pi 2^2 - K$$
$$= 4\pi - K.$$

Now, for f to be continuous at x = 2, these limits should agree, meaning $0 = 4\pi - K$. Thus $K = 4\pi$. $\overline{K = 4\pi}$

2. Use the Intermediate Value Theorem to show that there is a solution to sin(x) = x - 1 in the interval $[0, \pi]$.

The Intermediate Value Theorem says that if a function f is continuous on [a, b], then f attains every value between f(a) and f(b)on [a, b]. Thus, if $f(x) = \sin(x) - (x - 1) = \sin(x) - x + 1$, then fis continuous on $[0, \pi]$. Now, f(0) = 1 > 0 and $f(\pi) = 1 - \pi < 0$, so f must take on the value 0 at some c in $[0, \pi]$, meaning $f(c) = \sin(c) - (c-1) = 0$. Thus $\sin(c) = c - 1$, and we are done.

3. Evaluate:

$$\lim_{x \to 0} \frac{\sin(x)}{2x}$$

Given that the limit of $\frac{\sin(x)}{x}$ is 1 as $x \to 0$, we have

$$\lim_{x \to 0} \frac{\sin(x)}{2x} = \lim_{x \to 0} \frac{\sin(x)}{x} \cdot \frac{1}{2}$$
$$= 1 \cdot \frac{1}{2}$$
$$= \frac{1}{2}.$$

	1
l	<u>ה</u>
l	Ζ

Name <u>Solution</u>

Quiz 4

Put a box around your answer and show all work!

1. Determine the value of K so that f(x) is continuous at x = 0:

$$f(x) = \begin{cases} \log(x+K) & x \le 0\\ 2x+2 & x > 0 \end{cases}$$

We compute the limit of f as x approaches 0 from the left and from the right and assign a value to K so that these limits agree.

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \log(x + K)$$
$$= \log(K),$$

and

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 2x + 2$$

= 2.

Now, for f to be continuous at x = 0, these limits should agree, meaning $2 = \log(K)$, and thus $K = 10^2 = 100$. $\overline{K = 100}$

2. Use the Intermediate Value Theorem to show that there is a solution to $\cos(x) = 3x$ in the interval $[0, \pi]$.

The Intermediate Value Theorem says that if a function f is continuous on [a, b], then f attains every value between f(a) and f(b)on [a, b]. Thus, if $f(x) = \cos(x) - 3x$, then f is continuous on $[0, \pi]$. Now, $f(0) = \cos(0) = 1 > 0$, and $f(\pi) = \cos(\pi) - 3\pi =$ $-1 - 3\pi < 0$, so f must take on the value 0 at some c in $[0, \pi]$, meaning $f(c) = \cos(c) - 3c = 0$. Thus $\cos(c) = 3c$, and we are done.

3. Evaluate:

$$\lim_{x \to 0} \frac{\sin(2x)}{x}$$

We know the limit of $\frac{\sin(x)}{x}$ is 1 as $x \to 0$, and as a consequence we know the limit of $\frac{\sin(2x)}{2x}$ is 1 as $x \to 0$ as well. Thus

$$\lim_{x \to 0} \frac{\sin(2x)}{x} = \lim_{x \to 0} \frac{\sin(2x)}{2x} \cdot \frac{2}{1}$$
$$= 1 \cdot \frac{2}{1}$$
$$= 2.$$

2