Name \qquad

Quiz 6

Put a box around your answer and show all work!

1. Find the equation of the tangent line of $f(x)=\sin (x) \cos (x)$ at $x=\pi$.
First, we find the derivative of f at $x=\pi$:

$$
\begin{aligned}
f^{\prime}(x) & =\cos (x) \cdot \frac{d}{d x}(\sin (x))+\frac{d}{d x}(\cos (x)) \cdot \sin (x) \\
& =\cos (x)(\cos (x))+(-\sin (x))(\sin (x)) \\
& =\cos ^{2}(x)-\sin ^{2}(x) \Longrightarrow \\
f^{\prime}(\pi) & =\cos ^{2}(\pi)-\sin ^{2}(\pi) \\
& =(-1)^{2}-0 \\
& =1
\end{aligned}
$$

Now, we find the equation of our tangent line using the slope $f^{\prime}(\pi)=1$ and the point $(\pi, f(\pi))=(\pi, 0)$:

$$
y-0=1(x-\pi) \text {. }
$$

2. Find the second derivative of $g(x)=x^{3}+3 x^{2}+3 x+1$.

We take the derivative of g twice.

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x} g(x) \\
& =\frac{d}{d x}\left(x^{3}+3 x^{2}+3 x+1\right) \\
& =3 x^{2}+6 x+3 \Longrightarrow \\
g^{\prime \prime}(x) & =\frac{d}{d x} g^{\prime}(x) \\
& =\frac{d}{d x}\left(3 x^{2}+6 x+3\right) \\
& =6 x+6 .
\end{aligned}
$$

3. Find the derivative of $f(x)=\cot (x) \cos (x)$.

We use the product rule:

$$
\begin{aligned}
f^{\prime}(x) & =\cot (x) \frac{d}{d x}(\cos (x))+\frac{d}{d x}(\cot (x)) \cos (x) \\
& =\cot (x)(-\sin (x))+\left(-\csc ^{2}(x)\right) \cos (x) \\
& =-\cos (x)-\cot (x) \csc (x) .
\end{aligned}
$$

Name \qquad

Quiz 6

Put a box around your answer and show all work!

1. Find the equation of the tangent line of $f(x)=e^{x} \sin (x)$ at $x=\frac{\pi}{2}$. First, we find the derivative of f at $x=\frac{\pi}{2}$:

$$
\begin{aligned}
f^{\prime}(x) & =e^{x} \cdot \frac{d}{d x}(\sin (x))+\frac{d}{d x}\left(e^{x}\right) \cdot \sin (x) \\
& =e^{x}(\cos (x))+e^{x}(\sin (x)) \\
& =e^{x}(\cos (x)+\sin (x)) \Longrightarrow \\
f^{\prime}(\pi / 2) & =e^{\pi / 2}(\cos (\pi / 2)+\sin (\pi / 2)) \\
& =e^{\pi / 2}(0+1) \\
& =e^{\pi / 2}
\end{aligned}
$$

Now, we find the equation of our tangent line using the slope $f^{\prime}(\pi / 2)=e^{\pi / 2}$ and the point $\left(\pi / 2, e^{\pi / 2}\right)$.

$$
y-e^{\pi / 2}=e^{\pi / 2}(x-\pi / 2) \text {. }
$$

2. Find the second derivative of $g(x)=x^{3}-3 x^{2}+3 x-1$.

We take the derivative of g twice.

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x} g(x) \\
& =\frac{d}{d x}\left(x^{3}-3 x^{2}+3 x-1\right) \\
& =3 x^{2}-6 x+3 \Longrightarrow \\
g^{\prime \prime}(x) & =\frac{d}{d x} g^{\prime}(x) \\
& =\frac{d}{d x}\left(3 x^{2}-6 x+3\right) \\
& =6 x-6 .
\end{aligned}
$$

3. Find the derivative of $f(x)=\tan (x) \sin (x)$.

We use the product rule:

$$
\begin{aligned}
f^{\prime}(x) & =\tan (x) \frac{d}{d x}(\sin (x))+\frac{d}{d x}(\tan (x)) \sin (x) \\
& =\tan (x) \cos (x)+\sec ^{2}(x) \sin (x) \\
& =\sin (x)+\sec (x) \tan (x) .
\end{aligned}
$$

