Quiz 7

Put a box around your answer and show all work!

1. Find each x-value at which the graph of $f(x)=x \sqrt[3]{2 x+3}$ has a horizontal tangent line.
A horizontal tangent line means a derivative equal to 0 , so we first take the derivative:

$$
\begin{aligned}
f^{\prime}(x) & =x \frac{d}{d x}(\sqrt[3]{2 x+3})+\sqrt[3]{2 x+3} \frac{d}{d x}(x) \\
& =x\left(\frac{1}{3}(2 x+3)^{-2 / 3}(2)\right)+(2 x+3)^{1 / 3} \\
& =\frac{\frac{2}{3} x}{(2 x+3)^{2 / 3}}+\frac{(2 x+3)^{1}}{(2 x+3)^{2 / 3}} \\
& =\frac{\frac{8}{3} x+3}{(2 x+3)^{2 / 3}} .
\end{aligned}
$$

Now, we simply set our derivative equal to 0 and solve for x.

$$
\begin{aligned}
\frac{\frac{8}{3} x+3}{(2 x+3)^{2 / 3}} & =0 \Longrightarrow \\
\frac{8}{3} x+3 & =0 \Longrightarrow \\
\frac{8}{3} x & =-3 \\
x & \Longrightarrow-\frac{9}{8} .
\end{aligned}
$$

2. If $g(x)$ is the inverse function of $f(x)=e^{3 x}+x$, find $g^{\prime}(1)$. According to the 'inverse function theorem', we have that

$$
g^{\prime}(1)=\frac{1}{f^{\prime}(g(1))} .
$$

Now, we try some 'easy' values to see that $f(0)=1$, so $g(1)=$ $f^{-1}(1)=0$. We also find the derivative of f,

$$
f^{\prime}(x)=3 e^{3 x}+1
$$

so $f^{\prime}(g(1))=f^{\prime}(0)=3 e^{0}+1=4$, and

$$
g^{\prime}(1)=\frac{1}{f^{\prime}(g(1))}=\frac{1}{4} .
$$

3. Find $\frac{d y}{d x}$ if $y=x^{\sin (x)}$ for $x>0$.

We use logarithmic differentiation.

$$
\begin{aligned}
y & =x^{\sin (x)} \Longrightarrow \\
\ln (y) & =\ln \left(x^{\sin (x)}\right) \Longrightarrow \\
\ln (y) & =\sin (x) \cdot \ln (x) \Longrightarrow \\
\frac{\left(\frac{d y}{d x}\right)}{y} & =\sin (x) \cdot \frac{1}{x}+\ln (x) \cdot \cos (x) \Longrightarrow \\
\frac{d y}{d x} & =\left(\frac{\sin (x)}{x}+\ln (x) \cos (x)\right) y .
\end{aligned}
$$

Quiz 7

Put a box around your answer and show all work!

1. Find each x-value at which the graph of $f(x)=3 x \sqrt[3]{x+1}$ has a horizontal tangent line.
A horizontal tangent line means a derivative equal to 0 , so we must first take the derivative:

$$
\begin{aligned}
f^{\prime}(x) & =3 x \frac{d}{d x}(\sqrt[3]{x+1})+\sqrt[3]{x+1} \frac{d}{d x}(3 x) \\
& =3 x\left(\frac{1}{3}(x+1)^{-2 / 3}(1)\right)+\sqrt[3]{x+1}(3) \\
& =\frac{x}{(x+1)^{2 / 3}}+\frac{(x+1)^{1}}{(x+1)^{2 / 3}} \\
& =\frac{2 x+1}{(x+1)^{2 / 3}}
\end{aligned}
$$

Now, we simplify set our derivative equal to 0 and solve for x.

$$
\begin{aligned}
\frac{2 x+1}{(x+1)^{2 / 3}} & =0 \Longrightarrow \\
2 x+1 & =0 \Longrightarrow \\
x & =-\frac{1}{2}
\end{aligned}
$$

2. If $g(x)$ is the inverse function of $f(x)=e^{x}+3 x$, find $g^{\prime}(1)$. According to the 'inverse function theorem', we have that

$$
g^{\prime}(1)=\frac{1}{f^{\prime}(g(1))} .
$$

Now, we try some 'easy' values to see that $f(0)=1$, so $g(1)=$ $f^{-1}(1)=0$. We also find the derivative of f,

$$
f^{\prime}(x)=e^{x}+3,
$$

so $f^{\prime}(g(1))=f^{\prime}(0)=e^{0}+3=4$; and

$$
g^{\prime}(1)=\frac{1}{f^{\prime}(g(1))}=\frac{1}{4} .
$$

3. Find $\frac{d y}{d x}$ if $y=(\cos (x))^{-x}$ for $x>0$.

We use logarithmic differentiation.

$$
\begin{aligned}
y & =(\cos (x))^{-x} \Longrightarrow \\
\ln (y) & =\ln \left((\cos (x))^{-x}\right) \Longrightarrow \\
\ln (y) & =(-x) \ln (\cos (x)) \Longrightarrow \\
\frac{\left(\frac{d y}{d x}\right)}{y} & =(-x) \frac{-\sin (x)}{\cos (x)}+(-1) \ln (\cos (x)) \Longrightarrow \\
\frac{d y}{d x} & =\left(x \frac{\sin (x)}{\cos (x)}-\ln (\cos (x))\right) y .
\end{aligned}
$$

