Quiz 8

Put a box around your answer and show all work!

1. Find the linearization of $f(x)=\sqrt[3]{x^{2}}$ at $x=8$ and use it to approximate $\sqrt[3]{8.06^{2}}$.
The formula for the linearization $L(x)$ of f near $x=8$ is given by

$$
L(x)=f^{\prime}(8) \cdot(x-8)+f(8)
$$

In this case,

$$
f^{\prime}(x)=\frac{2}{3 x^{1 / 3}},
$$

so $f^{\prime}(8)=\frac{2}{3 \cdot 2}=1 / 3$ and $f(8)=4$, so our linearization is

$$
L(x)=\frac{1}{3}(x-8)+4 .
$$

To estimate $f(8.06)=\sqrt[3]{8.06^{2}}$, we simply plug 8.06 into our linearization:

$$
L(8.06)=\frac{1}{3}(8.06-8)+4=\frac{1}{3}(0.06)+4=4.02 .
$$

2. Find the absolute extrema of $g(x)=\sin (x)+\cos (x)$ on $[0, \pi]$. We find the critical points of g, then compare the function values at these critical points and the endpoints of the interval. The critical points are the points x in the domain of g where $g^{\prime}(x)=0$ or $g^{\prime}(x)$ is undefined. $g^{\prime}(x)=\cos (x)-\sin (x)$, so

$$
\begin{aligned}
g^{\prime}(x) & =\cos (x)-\sin (x)=0 \Longrightarrow \\
\cos (x) & =\sin (x) \Longrightarrow \\
x & =\frac{\pi}{4} .
\end{aligned}
$$

Now, we consider the values of g at the critical value and the endpoints of the interval:

$$
g(0)=1, \quad g(\pi / 4)=\sqrt{2}, \quad g(\pi)=-1
$$

The largest of these values, $g(\pi / 4)=\sqrt{2}$ is our absolute maximum, and the smallest of these values, $g(\pi)=-1$ is our absolute minimum.
3. Find the value of c implied by the Mean Value Theorem for $h(x)=$ $x^{3}-3 x$ on $[1,3]$.
First, we find the slope of the secant line connecting $(1, f(1))$ and $(3, f(3))$. The slope is given by

$$
\begin{aligned}
\frac{f(3)-f(1)}{3-1} & =\frac{\left(3^{3}-3 \cdot 3\right)-\left(1^{3}-3 \cdot 1\right)}{2} \\
& =\frac{20}{2} \\
& =10
\end{aligned}
$$

Now, we find the value c in $(1,3)$ so that $f^{\prime}(c)=10$. The derivative of f is $f^{\prime}(x)=3 x^{2}-3$, so

$$
\begin{aligned}
3 c^{2}-3 & =10 \\
3 c^{2} & =13 \Longrightarrow \\
c^{2} & =\frac{13}{3} \Longrightarrow \\
c & = \pm \sqrt{\frac{13}{3}} .
\end{aligned}
$$

Now, we want the positive solution as c should lie in $[1,3]$.

$$
c=\sqrt{13 / 3}
$$

Quiz 8

Put a box around your answer and show all work!

1. Find the linearization of $f(x)=\sqrt[3]{x}$ at $x=-8$ and use it to approximate $\sqrt[3]{-7.88}$.
The formula for the linearization $L(x)$ of f near $x=-8$ is given by

$$
L(x)=f^{\prime}(-8) \cdot(x-(-8))+f(-8) .
$$

In this case,

$$
f^{\prime}(x)=\frac{1}{3 x^{2 / 3}},
$$

so $f^{\prime}(-8)=\frac{1}{3 \cdot 4}=1 / 12$ and $f(-8)=-2$, so our linearization is

$$
L(x)=\frac{1}{12}(x+8)-2 .
$$

To estimate $f(-7.88)=\sqrt[3]{-7.88}$, we simply plug -7.88 into our linearization:

$$
L(-7.88)=\frac{1}{12}(-7.88+8)-2=\frac{0.12}{12}-2=-1.99 .
$$

2. Find the absolute extrema of $g(x)=\sin (x)-\cos (x)$ on $[0, \pi]$.

We find the critical points of g, then compare the function values at these critical points and the endpoints of the interval. The critical points are the points x in the domain of g where $g^{\prime}(x)=0$ or $g^{\prime}(x)$ is undefined. $g^{\prime}(x)=\cos (x)+\sin (x)$, so

$$
\begin{aligned}
g^{\prime}(x) & =\cos (x)+\sin (x)=0 \Longrightarrow \\
\cos (x) & =-\sin (x) \Longrightarrow \\
x & =\frac{3 \pi}{4}
\end{aligned}
$$

Now, we consider the values of g at the critical value and the endpoints of the interval:

$$
g(0)=1, \quad g(3 \pi / 4)=\sqrt{2}, \quad g(\pi)=-1
$$

The largest of these values, $g(3 \pi / 4)=\sqrt{2}$ is our absolute maximum, and the smallest of these values, $g(\pi)=-1$ is our absolute minimum.
3. Find the value of c implied by the Mean Value Theorem for $h(x)=$ $x^{2}-2 x+4$ on $[0,5]$.
First, we find the slope of the secant line connecting $(0, f(0))$ and $(5, f(5))$. The slope is given by

$$
\begin{aligned}
\frac{f(5)-f(0)}{5-0} & =\frac{\left(5^{2}-2 \cdot 5+4\right)-\left(0^{2}-2 \cdot 0+4\right)}{5-0} \\
& =\frac{15}{5} \\
& =3
\end{aligned}
$$

Now, we find the value c in $(1,3)$ so that $f^{\prime}(c)=3$. The derivative of f is $f^{\prime}(x)=2 x-2$, so

$$
\begin{aligned}
2 c-2 & =3 \Longrightarrow \\
2 c & =5 \Longrightarrow \\
c & =5 / 2 .
\end{aligned}
$$

$$
c=5 / 2
$$

