1. Let $f(x)=\frac{1}{x-2}$ and $g(x)=\frac{x}{x+1}$. Find $(g \circ f)(x)$ and its domain.

Solution. First, we find the composition $(g \circ f)(x)=g(f(x))$ by plugging the formula for $f(x)$ into the formula for $g(x)$:

$$
\begin{aligned}
g(f(x)) & =g\left(\frac{1}{x-2}\right) \\
& =\frac{\left(\frac{1}{x-2}\right)}{\left(\frac{1}{x-2}\right)+1} \\
& =\frac{\left(\frac{1}{x-2}\right)}{\left(\frac{1}{x-2}\right)+1} \cdot \frac{x-2}{x-2} \\
& =\frac{1}{1+(x-2)} \\
& =\frac{1}{x-1}
\end{aligned}
$$

Now, to find the domain of $(g \circ f)(x)$, we consider both the domain of $\frac{1}{x-1}$ and the domain of $f(x)$. The domain of $\frac{1}{x-1}$ includes every value except $x=1$, and written in interval notation is $(-\infty, 1) \cup(1, \infty)$. The domain of $f(x)=\frac{1}{x-2}$ includes every value except $x=2$, and written in interval notation is $(-\infty, 1) \cup(1, \infty)$.
The domain of the composition $(g \circ f)(x)$ is the intersection of these domains, and thus is

$$
(-\infty, 1) \cup(1,2) \cup(2, \infty)
$$

2. Solve for x :

$$
\frac{3}{x+1}+\frac{1}{x-1}=2
$$

Solution. First, we combine the two terms on the lefthand side using a common
denominator:

$$
\begin{aligned}
\frac{3}{x+1}+\frac{1}{x-1} & =2 \\
\frac{3}{x+1} \cdot \frac{x-1}{x-1}+\frac{1}{x-1} \cdot \frac{x+1}{x+1} & =2 \\
\frac{3 x-3}{(x+1)(x-1)}+\frac{x+1}{(x+1)(x-1)} & =2 \\
\frac{4 x-2}{x^{2}-1} & =2
\end{aligned}
$$

Now, we multiply both sides by $x^{2}-1$ to eliminate the denominator.

$$
\begin{aligned}
\left(x^{2}-1\right) \cdot \frac{4 x-2}{x^{2}-1} & =2 \cdot\left(x^{2}-1\right) \\
4 x-2 & =2 x^{2}-2
\end{aligned}
$$

Gathering the terms on one side and factoring lets us see the solutions.

$$
\begin{aligned}
4 x-2 & =2 x^{2}-2 \\
0 & =2 x^{2}-4 x \\
0 & =2 x(x-2)
\end{aligned}
$$

The expression $2 x(x-2)$ is zero when either $x=0$ or $x-2=0$, meaning our solutions are at $x=0$ and $x=2$. The domain of our original equation only disallows $x=-1$ and $x=1$, so both $x=0$ and $x=2$ are 'good' solutions.

$$
x=0,2 .
$$

3. Find all values of θ in $[0,2 \pi)$ such that $2 \sin \theta \geq \sqrt{2}$. Write your answer in interval notation.
Solution. First, we find the values of θ so that $2 \sin (\theta)=\sqrt{2}$.

$$
\begin{aligned}
2 \sin (\theta) & =\sqrt{2} \\
\sin (\theta) & =\frac{\sqrt{2}}{2}
\end{aligned}
$$

The sine function takes the value $\frac{\sqrt{2}}{2}$ when $\theta=\pi / 4$ and $\theta=3 \pi / 4$.

Now, we simply check points in each 'region' of the number line, $[0, \pi / 4),(\pi / 4,3 \pi / 4)$, and $(3 \pi / 4,2 \pi)$. The regions we want to include are those where the sample point yields a 'good' result, i.e. $\sin (\theta) \geq \frac{\sqrt{2}}{2}$.

$$
\begin{aligned}
\sin (0) & =0 \\
& \nsupseteq \frac{\sqrt{2}}{2}, \text { so }[0, \pi / 4) \text { is not included. } \\
\sin (\pi / 2) & =1 \\
& \geq \frac{\sqrt{2}}{2}, \text { so }(\pi / 4,3 \pi / 4) \text { is included. } \\
\sin (\pi) & =0 \\
& \nsupseteq \frac{\sqrt{2}}{2}, \text { so }(3 \pi / 4,2 \pi) \text { is not included. }
\end{aligned}
$$

Lastly, we also choose to include $\theta=\pi / 4,3 \pi / 4$ because they do satisfy the original equation. Our answer is

$$
[\pi / 4,3 \pi / 4] .
$$

