1. Let $f(x)=\sqrt{4-x^{2}}$ and $g(x)=\frac{1}{x^{2}-4}$. Find $(g \circ f)(x)$ and its domain.

Solution. First, we find the composition $(g \circ f)(x)=g(f(x))$ by plugging the formula for $f(x)$ into the formula for $g(x)$:

$$
\begin{aligned}
g(f(x)) & =g\left(\sqrt{4-x^{2}}\right) \\
& =\frac{1}{\left(\sqrt{4-x^{2}}\right)^{2}-4} \\
& =\frac{1}{\left(4-x^{2}\right)-4} \\
& =\frac{1}{-x^{2}}
\end{aligned}
$$

Now, to find the domain of $(g \circ f)(x)$, we consider both the domain of $\frac{1}{-x^{2}}$ and the domain of $f(x)$. The domain of $\frac{1}{-x^{2}}$ includes every value except $x=0$, and written in interval notation is $(-\infty, 0) \cup(0, \infty)$. The domain of $f(x)=\sqrt{4-x^{2}}$ is determined by finding where the radicand $4-x^{2}$ is at least 0 , that is

$$
\begin{aligned}
4-x^{2} & \geq 0 \\
4 & \geq x^{2}
\end{aligned}
$$

If $x^{2} \leq 4$, then $|x| \leq 2$, and so the domain of f is $[-2,2]$.
The domain of the composition $(g \circ f)(x)$ is the intersection of these domains, and thus is

$$
[-2,0) \cup(0,2] .
$$

2. Solve for x :

$$
\frac{1}{x+1}+\frac{3}{x-1}+2=0
$$

Solution. First, we move the constant term to the righthand side and combine the
two remaining terms on the lefthand side using a common denominator:

$$
\begin{aligned}
\frac{1}{x+1}+\frac{3}{x-1}+2 & =0 \\
\frac{1}{x+1}+\frac{3}{x-1} & =-2 \\
\frac{1}{x+1} \cdot \frac{x-1}{x-1}+\frac{3}{x-1} \cdot \frac{x+1}{x+1} & =-2 \\
\frac{x-1}{(x+1)(x-1)}+\frac{3 x+3}{(x+1)(x-1)} & =-2 \\
\frac{4 x+2}{x^{2}-1} & =-2 .
\end{aligned}
$$

Now, we multiply both sides by $x^{2}-1$ to eliminate the denominator.

$$
\begin{aligned}
\left(x^{2}-1\right) \cdot \frac{4 x+2}{x^{2}-1} & =-2 \cdot\left(x^{2}-1\right) \\
4 x+2 & =-2 x^{2}+2
\end{aligned}
$$

Gathering the terms on one side and factoring lets us see the solutions.

$$
\begin{aligned}
4 x+2 & =-2 x^{2}+2 \\
2 x^{2}+4 x & =0 \\
2 x(x+2) & =0
\end{aligned}
$$

The expression $2 x(x+2)$ is zero when either $x=0$ or $x+2=0$, meaning our solutions are at $x=0$ and $x=-2$. The domain of our original equation only disallows $x=-1$ and $x=1$, so both $x=0$ and $x=-2$ are 'good' solutions.

$$
x=-2,0 .
$$

3. Find all values of θ in $[0,2 \pi)$ such that $2 \cos \theta+\sqrt{2} \leq 0$. Write your answer in interval notation.

Solution. First, we find the values of θ so that $2 \cos (\theta)+\sqrt{2}=0$.

$$
\begin{aligned}
2 \cos (\theta)+\sqrt{2} & =0 \\
2 \cos (\theta) & =-\sqrt{2} \\
\cos (\theta) & =-\frac{\sqrt{2}}{2}
\end{aligned}
$$

The cosine function takes the value $-\frac{\sqrt{2}}{2}$ when $\theta=3 \pi / 4$ and $\theta=5 \pi / 4$.

Now, we simply check points in each 'region' of the number line, $[0,3 \pi / 4),(3 \pi / 4,5 \pi / 4)$, and $(5 \pi / 4,2 \pi)$. The regions we want to include are those where the sample point yields a 'good' result, i.e. $\cos (\theta) \leq-\frac{\sqrt{2}}{2}$.

$$
\begin{aligned}
\cos (0) & =1 \\
& \not \leq-\frac{\sqrt{2}}{2}, \text { so }[0,3 \pi / 4) \text { is not included. } \\
\cos (\pi) & =-1 \\
& \leq \frac{\sqrt{2}}{2}, \text { so }(3 \pi / 4,5 \pi / 4) \text { is included. } \\
\cos (3 \pi / 2) & =0 \\
& \not \leq \frac{\sqrt{2}}{2}, \text { so }(3 \pi / 4,2 \pi) \text { is not included. }
\end{aligned}
$$

Lastly, we also choose to include $\theta=3 \pi / 4,5 \pi / 4$ because they do satisfy the original equation. Our answer is

$$
[3 \pi / 4,5 \pi / 4] .
$$

