1. Determine the value of K so that $f(x)$ is continuous at $x=2$:

$$
f(x)= \begin{cases}\sin \left(\pi x^{2}\right) & x \leq 2 \\ \pi x^{2}-K & x>2\end{cases}
$$

Solution. We compute the limit of f as x approaches 2 from the left and from the right and assign a value to K so that these limits agree.

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}} \sin \left(\pi x^{2}\right) \\
& =\sin \left(\pi 2^{2}\right) \\
& =0,
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}} \pi x^{2}-K \\
& =\pi 2^{2}-K \\
& =4 \pi-K
\end{aligned}
$$

Now, for f to be continuous at $x=2$, these limits should agree, meaning $0=4 \pi-K$. Thus $K=4 \pi$.

$$
K=4 \pi
$$

2. Use the Intermediate Value Theorem to show that there is a solution to $\sin (x)=x-1$ in the interval $[0, \pi]$.

Solution. The Intermediate Value Theorem says that if a function f is continuous on $[a, b]$, then f attains every value between $f(a)$ and $f(b)$ on $[a, b]$. Thus, if

$$
f(x)=\sin (x)-(x-1)=\sin (x)-x+1,
$$

then f is continuous on $[0, \pi]$. Now, $f(0)=1>0$ and $f(\pi)=1-\pi<0$, so f must take on the value 0 at some c in $[0, \pi]$, meaning $f(c)=\sin (c)-(c-1)=0$. Thus $\sin (c)=c-1$, and we are done.
3. Evaluate

$$
\lim _{x \rightarrow 2} \frac{\frac{1}{x}-\frac{1}{2}}{2-x} .
$$

Solution. We simplify the fraction and compute the remaining (simple) limit.

$$
\begin{aligned}
\frac{\frac{2}{x}-\frac{x}{2}}{4-x^{2}} & =\frac{\frac{2}{x}-\frac{x}{2}}{4-x^{2}} \cdot \frac{2 x}{2 x} \\
& =\frac{4-x^{2}}{\left(4-x^{2}\right)(2 x)} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now, computing our limit is easy:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\frac{2}{x}-\frac{x}{2}}{4-x^{2}} & =\lim _{x \rightarrow 2} \frac{1}{2 x} \\
& =\frac{1}{2(2)} \\
& =\frac{1}{4}
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline \frac{1}{4} \\
\hline
\end{array}
$$

