1. Determine the value of K so that $f(x)$ is continuous at $x=0$:

$$
f(x)=\left\{\begin{array}{cl}
\log (x+K) & x \leq 0 \\
2 x+2 & x>0
\end{array}\right.
$$

Solution. We compute the limit of f as x approaches 0 from the left and from the right and assign a value to K so that these limits agree.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}} \log (x+K) \\
& =\log (K),
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}} 2 x+2 \\
& =2 .
\end{aligned}
$$

Now, for f to be continuous at $x=0$, these limits should agree, meaning $2=\log (K)$, and thus $K=10^{2}=100$.

$$
K=100
$$

2. Use the Intermediate Value Theorem to show that there is a solution to $\cos (x)=3 x$ in the interval $[0, \pi]$.
Solution. The Intermediate Value Theorem says that if a function f is continuous on $[a, b]$, then f attains every value between $f(a)$ and $f(b)$ on $[a, b]$. Thus, if

$$
f(x)=\cos (x)-3 x
$$

then f is continuous on $[0, \pi]$. Now, $f(0)=\cos (0)=1>0$, and $f(\pi)=\cos (\pi)-$ $3 \pi=-1-3 \pi<0$, so f must take on the value 0 at some c in $[0, \pi]$, meaning $f(c)=\cos (c)-3 c=0$. Thus $\cos (c)=3 c$, and we are done.
3. Evaluate

$$
\lim _{x \rightarrow 2} \frac{\frac{2}{x}-\frac{x}{2}}{4-x^{2}}
$$

Solution. We simplify the given fraction and compute the remaining (simple) limit.

$$
\begin{aligned}
\frac{\frac{1}{x}-\frac{1}{2}}{2-x} & =\frac{\frac{1}{x}-\frac{1}{2}}{2-x} \cdot \frac{2 x}{2 x} \\
& =\frac{2-x}{(2-x)(2 x)} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now, computing our limit is easy:

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{\frac{1}{x}-\frac{1}{2}}{2-x}=\lim _{x \rightarrow 2} \frac{1}{2 x} \\
&=\frac{1}{2(2)} \\
&=\frac{1}{4} \\
& \\
& \frac{1}{4}
\end{aligned}
$$

