1. Evaluate

$$
\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+4 x+5}\right)
$$

Solution. Since plugging in $-\infty$ yields an indeterminate form of $-\infty+\infty$, we have to try harder. In this case, multiplying by the conjugate (over itself) helps us:

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+4 x+5}\right) & =\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+4 x+5}\right) \cdot \frac{x+\sqrt{x^{2}+4 x+5}}{x+\sqrt{x^{2}+4 x+5}} \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}-\left(x^{2}+4 x+5\right)}{x+\sqrt{x^{2}+4 x+5}} \\
& =\lim _{x \rightarrow \infty} \frac{-4 x-5}{x+\sqrt{x^{2}+4 x+5}} .
\end{aligned}
$$

Unfortunately, plugging in ∞ still yields an indeterminate form, but we note that the 'degree' of the numerator and the denominator are the same, where we consider $\sqrt{x^{2}+4 x+5}$ to have 'degree' 1 . We then divide the numerator and denominator by x^{1}, using that for positive values of $x, x^{1}=\sqrt{x^{2}}$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{-4 x-5}{x+\sqrt{x^{2}+4 x+5}} & =\lim _{x \rightarrow \infty} \frac{\frac{-4 x}{x}+\frac{5}{x}}{\frac{x}{x}+\frac{\sqrt{x^{2}+4 x+5}}{\sqrt{x^{2}}}} \\
& =\lim _{x \rightarrow \infty} \frac{-4-\frac{5}{x}}{1+\sqrt{1+\frac{4}{x}+\frac{5}{x^{2}}}}
\end{aligned}
$$

Now, plugging in ∞ gives us the answer we so desire:

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{-4-\frac{5}{x}}{1+\sqrt{1+\frac{4}{x}+\frac{5}{x^{2}}}}=\frac{-4}{1+\sqrt{1}}=-2 . \\
-2
\end{gathered}
$$

2. Find all horizontal asymptotes of

$$
f(x)=\frac{6+2 e^{x}}{e^{2 x}-9}
$$

Solution. Horizontal asymptotes are just limits at $\pm \infty$, so we find the limit of $f(x)$ as x goes to either ∞ or $-\infty$. First, we see that by plugging in,

$$
\lim _{x \rightarrow-\infty} \frac{6+2 e^{x}}{e^{2 x}-9}=\frac{6}{-9}=-\frac{2}{3}
$$

so one of our horizontal asymptotes is $y=-2 / 3$. To find our other limit, first note that plugging in ∞ yields an indeterminate form. Then, we apply a method similar to that of problem 1 and divide both the numerator and the denominator by e^{x}.

$$
\lim _{x \rightarrow \infty} \frac{6+2 e^{x}}{e^{2 x}-9}=\lim _{x \rightarrow \infty} \frac{\frac{6}{e^{x}}+2}{e^{x}-\frac{9}{e^{x}}}
$$

Now, plugging in does not yield an indeterminate form, and we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{6+2 e^{x}}{e^{2 x}-9} & =\lim _{x \rightarrow \infty} \frac{\frac{6}{e^{x}}+2}{e^{x}-\frac{9}{e^{x}}} \\
& =\frac{2}{+\infty} \\
& =0
\end{aligned}
$$

Thus we have two horizontal asymptotes,

$$
y=-2 / 3,0
$$

3. Using the limit definition, find the equation of the tangent line of $f(x)=x^{2}+9$ at $x=-3$.

Solution. The tangent line to $f(x)$ at $x=-3$ is the line that has slope $f^{\prime}(-3)$ and goes through the point $(-3, f(-3))$. We first find $f^{\prime}(-3)$ using the limit definition.

$$
\begin{aligned}
f^{\prime}(-3) & =\lim _{h \rightarrow 0} \frac{f(-3+h)-f(-3)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(-3+h)^{2}+9-\left((-3)^{2}+9\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-6 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(h-6)}{h} \\
& =\lim _{h \rightarrow 0} h-6 \\
& =-6 .
\end{aligned}
$$

Now, we just use this slope along with our point $(-3, f(-3))=(-3,18)$ to get our line:

$$
y-18=-6(x+3)
$$

