1. Evaluate:

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{2 x}
$$

Solution. Given that the limit of $\frac{\sin (x)}{x}$ is 1 as $x \rightarrow 0$, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (x)}{2 x} & =\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \cdot \frac{1}{2} \\
& =1 \cdot \frac{1}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

$$
\frac{1}{2}
$$

2. Find the second derivative of $g(x)=x^{3}+3 x^{2}+3 x+1$.

Solution. We take the derivative of g twice.

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x} g(x) \\
& =\frac{d}{d x}\left(x^{3}+3 x^{2}+3 x+1\right) \\
& =3 x^{2}+6 x+3 \Longrightarrow \\
g^{\prime \prime}(x) & =\frac{d}{d x} g^{\prime}(x) \\
& =\frac{d}{d x}\left(3 x^{2}+6 x+3\right) \\
& =6 x+6 . \\
& 6 x+6
\end{aligned}
$$

3. Find the derivative of $f(x)=\cot (x) \cos (x)$.

Solution. We use the product rule:

$$
\begin{aligned}
f^{\prime}(x) & =\cot (x) \frac{d}{d x}(\cos (x))+\frac{d}{d x}(\cot (x)) \cos (x) \\
& =\cot (x)(-\sin (x))+\left(-\csc ^{2}(x)\right) \cos (x) \\
& =-\cos (x)-\cot (x) \csc (x) \\
& =-\frac{\cos (x)\left(\sin ^{2}(x)+1\right)}{\sin ^{2}(x)} \\
& =-\cos (x)\left(1+\csc ^{2}(x)\right) .
\end{aligned}
$$

