1. Evaluate:

$$
\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x}
$$

Solution. We know the limit of $\frac{\sin (x)}{x}$ is 1 as $x \rightarrow 0$, and as a consequence we know the limit of $\frac{\sin (2 x)}{2 x}$ is 1 as $x \rightarrow 0$ as well. Thus

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x} & =\lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x} \cdot \frac{2}{1} \\
& =1 \cdot \frac{2}{1} \\
& =2
\end{aligned}
$$

2
2. Find the second derivative of $g(x)=x^{3}-3 x^{2}+3 x-1$.

Solution. We take the derivative of g twice.

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x} g(x) \\
& =\frac{d}{d x}\left(x^{3}-3 x^{2}+3 x-1\right) \\
& =3 x^{2}-6 x+3 \Longrightarrow \\
g^{\prime \prime}(x) & =\frac{d}{d x} g^{\prime}(x) \\
& =\frac{d}{d x}\left(3 x^{2}-6 x+3\right) \\
& =6 x-6 . \\
& 6 x-6
\end{aligned}
$$

3. Find the derivative of $f(x)=\tan (x) \sin (x)$.

Solution. We use the product rule:

$$
\begin{aligned}
f^{\prime}(x) & =\tan (x) \frac{d}{d x}(\sin (x))+\frac{d}{d x}(\tan (x)) \sin (x) \\
& =\tan (x) \cos (x)+\sec ^{2}(x) \sin (x) \\
& =\sin (x)+\sec (x) \tan (x) \\
& =\frac{\sin (x)\left(\cos ^{2}(x)+1\right)}{\cos ^{2}(x)} \\
& =\sin (x)\left(1+\sec ^{2}(x)\right) .
\end{aligned}
$$

