1. Find the slope of the tangent line to $f(x)=\arccos (x) \sqrt{1-x^{2}}$ at $x=0$.

Solution. The slope of the tangent line to $f(x)$ at $x=0$ is defined as $f^{\prime}(0)$, so we begin by differentiating using the product and chain rules:

$$
\begin{aligned}
f^{\prime}(x) & =\arccos (x) \cdot \frac{1}{2}(-2 x)\left(1-x^{2}\right)^{-1 / 2}+\sqrt{1-x^{2}} \cdot \frac{-1}{\sqrt{1-x^{2}}} \\
& =-\frac{x \arccos (x)}{\sqrt{1-x^{2}}}-1 .
\end{aligned}
$$

Now, we simply plug in $x=0$:

$$
\begin{gathered}
f^{\prime}(0)=-\frac{0 \arccos (0)}{\sqrt{1-0^{2}}}-1=-1 . \\
f^{\prime}(0)=-1
\end{gathered}
$$

2. Find $\frac{d y}{d x}$ in terms of x and y if $e^{y / x}=\cos (x)+\sin (y)$.

Solution. We use implicit differentiation. Taking a derivative of either side gives

$$
e^{y / x} \cdot \frac{x \frac{d y}{d x}-y}{x^{2}}=-\sin (x)+\frac{d y}{d x} \cos (y)
$$

and some rearranging yields

$$
\begin{aligned}
\frac{d y}{d x}\left(x e^{y / x}-x^{2} \cos (y)\right) & =y e^{y / x}-x^{2} \sin (x) \Longrightarrow \\
\frac{d y}{d x} & =\frac{y e^{y / x}-x^{2} \sin (x)}{x e^{y / x}-x^{2} \cos (y)}
\end{aligned}
$$

which is our final answer.

$$
\frac{d y}{d x}=\frac{y e^{y / x}-x^{2} \sin (x)}{x e^{y / x}-x^{2} \cos (y)}
$$

3. Find the derivative of $f(x)=(\sec (x))^{x}$ in terms of x.

Solution. We use logarithmic differentiation. Let $y=(\sec (x))^{x}$. Then

$$
\ln (y)=\ln \left((\sec (x))^{x}\right)=x \ln (\sec (x))
$$

and taking a derivative gives

$$
\begin{aligned}
\frac{\left(\frac{d y}{d x}\right)}{y} & =\ln (\sec (x))+x \frac{\sec (x) \tan (x)}{\sec (x)} \\
& =\ln (\sec (x))+x \tan (x) \Longrightarrow \\
\frac{d y}{d x} & =y(\ln (\sec (x))+x \tan (x)) \\
& =(\sec (x))^{x}(\ln (\sec (x))+x \tan (x)) . \\
\frac{d y}{d x} & =(\sec (x))^{x}(\ln (\sec (x))+x \tan (x))
\end{aligned}
$$

