1. Find the slope of the tangent line to $f(x)=x \sec ^{-1}\left(x^{2}\right)$ at $x=\sqrt{2}$.

Solution. The slope of the tangent line to $f(x)$ at $x=\sqrt{2}$ is defined as $f^{\prime}(\sqrt{2})$, so we begin by differentiating using the product and chain rules:

$$
\begin{aligned}
f^{\prime}(x) & =\sec ^{-1}\left(x^{2}\right) \cdot 1+x \cdot \frac{2 x}{x^{2} \sqrt{x^{4}-1}} \\
& =\sec ^{-1}\left(x^{2}\right)+\frac{2}{\sqrt{x^{4}-1}}
\end{aligned}
$$

Now, we simply plug in $x=\sqrt{2}$:

$$
\begin{gathered}
f^{\prime}(\sqrt{2})=\sec ^{-1}(2)+\frac{2}{\sqrt{4-1}}=\frac{\pi}{3}+\frac{2}{\sqrt{3}} \\
f^{\prime}(\sqrt{2})=\frac{\pi}{3}+\frac{2}{\sqrt{3}}
\end{gathered}
$$

2. Find $\frac{d y}{d x}$ in terms of x and y if $e^{x / y}=\cos (y)+\sin (x)$.

Solution. We use implicit differentiation. Taking a derivative of either side gives

$$
e^{x / y} \cdot \frac{y-x \frac{d y}{d x}}{y^{2}}=-\frac{d y}{d x} \sin (y)+\cos (x)
$$

and some rearranging yields

$$
\begin{aligned}
\frac{d y}{d x}\left(y^{2} \sin (y)-x e^{x / y}\right) & =y^{2} \cos (x)-y e^{x / y} \Longrightarrow \\
\frac{d y}{d x} & =\frac{y^{2} \cos (x)-y e^{x / y}}{y^{2} \sin (y)-x e^{x / y}},
\end{aligned}
$$

which is our final answer.

$$
\frac{d y}{d x}=\frac{y^{2} \cos (x)-y e^{x / y}}{y^{2} \sin (y)-x e^{x / y}}
$$

3. Find the derivative of $f(x)=x^{\sin (x)}$ in terms of x.

Solution. We use logarithmic differentiation. Let $y=x^{\sin (x)}$. Then

$$
\ln (y)=\ln \left(x^{\sin (x)}\right)=\sin (x) \ln (x),
$$

and taking a derivative gives

$$
\begin{aligned}
\frac{\left(\frac{d y}{d x}\right)}{y} & =\cos (x) \ln (x)+\sin (x) \frac{1}{x} \Longrightarrow \\
\frac{d y}{d x} & =y\left(\cos (x) \ln (x)+\frac{\sin (x)}{x}\right) \\
& =x^{\sin (x)}\left(\cos (x) \ln (x)+\frac{\sin (x)}{x}\right) . \\
\frac{d y}{d x} & =x^{\sin (x)}\left(\cos (x) \ln (x)+\frac{\sin (x)}{x}\right)
\end{aligned}
$$

