1. Find the slope of the tangent line to $f(x) = x \sec^{-1}(x^2)$ at $x = \sqrt{2}$.

Solution. The slope of the tangent line to f(x) at $x = \sqrt{2}$ is defined as $f'(\sqrt{2})$, so we begin by differentiating using the product and chain rules:

$$f'(x) = \sec^{-1}(x^2) \cdot 1 + x \cdot \frac{2x}{x^2 \sqrt{x^4 - 1}}$$
$$= \sec^{-1}(x^2) + \frac{2}{\sqrt{x^4 - 1}}.$$

Now, we simply plug in $x = \sqrt{2}$:

$$f'(\sqrt{2}) = \sec^{-1}(2) + \frac{2}{\sqrt{4-1}} = \frac{\pi}{3} + \frac{2}{\sqrt{3}}$$
$$f'(\sqrt{2}) = \frac{\pi}{3} + \frac{2}{\sqrt{3}}$$

2. Find $\frac{dy}{dx}$ in terms of x and y if $e^{x/y} = \cos(y) + \sin(x)$.

Solution. We use implicit differentiation. Taking a derivative of either side gives

$$e^{x/y} \cdot \frac{y - x\frac{dy}{dx}}{y^2} = -\frac{dy}{dx}\sin(y) + \cos(x),$$

and some rearranging yields

$$\frac{dy}{dx} \left(y^2 \sin(y) - x e^{x/y} \right) = y^2 \cos(x) - y e^{x/y} \Longrightarrow$$

$$\frac{dy}{dx} = \frac{y^2 \cos(x) - y e^{x/y}}{y^2 \sin(y) - x e^{x/y}},$$

which is our final answer.

$$\frac{dy}{dx} = \frac{y^2 \cos(x) - ye^{x/y}}{y^2 \sin(y) - xe^{x/y}}$$

3. Find the derivative of $f(x) = x^{\sin(x)}$ in terms of x.

Solution. We use logarithmic differentiation. Let $y = x^{\sin(x)}$. Then

$$\ln(y) = \ln(x^{\sin(x)}) = \sin(x)\ln(x),$$

and taking a derivative gives

$$\frac{\left(\frac{dy}{dx}\right)}{y} = \cos(x)\ln(x) + \sin(x)\frac{1}{x} \Longrightarrow$$

$$\frac{dy}{dx} = y\left(\cos(x)\ln(x) + \frac{\sin(x)}{x}\right)$$

$$= x^{\sin(x)}\left(\cos(x)\ln(x) + \frac{\sin(x)}{x}\right).$$

$$\frac{dy}{dx} = x^{\sin(x)} \left(\cos(x) \ln(x) + \frac{\sin(x)}{x} \right)$$