1. A balloon is released at time $t=0$. The height of a balloon is given by

$$
h(t)=6-t^{2}+t^{3},
$$

where $t$ is in seconds and $h$ is in feet.
(a) (2 points) When is the balloon moving upwards?

Solution. We find the times $t \geq 0$ such that $h^{\prime}(t)>0$. Observer $h^{\prime}(t)=3 t^{2}-2 t$ is a parabola that opens upwards and has zeros at $t=0,2 / 3$. Thus $h^{\prime}(t)$ is positive for all $t>2 / 3$. We exhibit the 'sign line' for $h^{\prime}(t)$ below.

(b) (2 points) When is the balloon speeding up?

Solution. We find the times where $h^{\prime \prime}(t)$ has a different sign from $h^{\prime}(t)$. Since we have the sign line for $h^{\prime}(t)$ already, we look at $h^{\prime \prime}(t)=6 t-2$. This is a line with positive slope and $x$-intercept $t=1 / 3$, and thus is negative for $t<1 / 3$ and is positive for $t>1 / 3$.


Thus the only values of $t$ for which the sign of $h^{\prime}(t)$ differs from that of $h^{\prime \prime}(t)$ are values between $1 / 3$ and $2 / 3$.

$$
(1 / 3,2 / 3)
$$

2. The base of a right triangle at time $t$ is given by $b(t)=t^{2}+1$. The height of the right triangle at time $t$ is given by $h(t)=t^{2}+t$. Find the rate at which the area of the triangle is changing at time $t$.
Solution. Since the area of a right triangle is equal to a half of the product of its base as its height, we have the area at time $t$ is given by

$$
\begin{aligned}
A(t) & =\frac{1}{2} b(t) h(t)=\frac{1}{2}\left(t^{2}+1\right)\left(t^{2}+t\right) \\
& =\frac{1}{2}\left(t^{4}+t^{3}+t^{2}+t\right)
\end{aligned}
$$

Thus we have that its derivative is $A^{\prime}(t)=\frac{1}{2}\left(4 t^{3}+3 t^{2}+2 t+1\right)$.

$$
\frac{1}{2}\left(4 t^{3}+3 t^{2}+2 t+1\right)
$$

