1. Find each value of x where $f(x)=e^{x}-100 x-\frac{1}{2} x^{2}$ has an inflection point.

Solution. An inflection point of f is a point in the domain of f where $f^{\prime \prime}$ changes sign. Note that the domain of f is all real numbers, and thus we may proceed with finding the second derivative of f.

$$
\begin{aligned}
f^{\prime}(x) & =e^{x}-100-x \Longrightarrow \\
f^{\prime \prime}(x) & =e^{x}-1
\end{aligned}
$$

Our only potential inflection point occurs where $f^{\prime \prime}(x)=0$, meaning $x=0$. We exhibit the sign line for $f^{\prime \prime}$ below.

Indeed, $f^{\prime \prime}$ changes sign at $x=0$, so it is our only inflection point.

$$
x=0
$$

2. Let $g(x)=\frac{1}{2 x+4}$. Find each interval where g is decreasing and concave up.

Solution. Note that the domain of g is $(-\infty,-2) \cup(-2, \infty)$. Now, our function g is decreasing where its first derivative is negative, and g is concave up where its second derivative is positive, so we construct sign lines for both g^{\prime} and $g^{\prime \prime}$. First, we compute the first and second derivatives of g.

$$
g^{\prime}(x)=\frac{-2}{(2 x+4)^{2}} \quad g^{\prime \prime}(x)=\frac{8}{(2 x+4)^{3}}
$$

The points which should be marked on our g^{\prime} sign line are those points where g^{\prime} is either 0 or undefined. Since g^{\prime} never takes on the value 0 , we just note that it is undefined at $x=-2$, so that goes on our number line. Then, we check points in each interval on our number line to determine where g^{\prime} is positive or negative.

The procedure for the the $g^{\prime \prime}$ sign line is the same, and the sign line is given below.

Now, g is both decreasing and concave up on $(-2, \infty)$, so this is our answer.

$$
(-2, \infty)
$$

3. Evaluate

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{2}}
$$

Solution. Since 'plugging in' infinity gives an indeterminate form, we apply L'Hospital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{2}} . & =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}\left(x^{2}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{2 x} \\
& =\lim _{x \rightarrow \infty} \frac{1}{2 x^{2}} \\
& =0 .
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline 0 \\
\hline
\end{array}
$$

