1. Find each value of x where $f(x)=\ln (x)+100 x+\frac{1}{2} x^{2}$ has an inflection point.

Solution. An inflection point of f is a point in the domain of f where $f^{\prime \prime}$ changes sign. First, note that the domain of f is $(0, \infty)$, Now, we proceed with finding the second derivative of f.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x}+100+x \Longrightarrow \\
f^{\prime \prime}(x) & =\frac{-1}{x^{2}}+1 \\
& =\frac{x^{2}-1}{x^{2}} .
\end{aligned}
$$

Our potential inflection points occur where either $f^{\prime \prime}$ is 0 or undefined. Since $f^{\prime \prime}$ is only undefined at the point $x=0$, which is not in the domain of f, we concern ourselves only with those points where $f^{\prime \prime}$ is 0 . If $f^{\prime \prime}(x)=0$, then $x^{2}=1$. Thus $f^{\prime \prime}(x)=0$ means $x=-1$ or $x=1$. Since $x=-1$ is not in our domain, our only potential inflection point is $x=1$.

Indeed, $f^{\prime \prime}$ changes sign at $x=1$, so it is our only inflection point.

$$
\begin{array}{|l|}
\hline x=0 \\
\hline
\end{array}
$$

2. Let $g(x)=\frac{1}{3-x}$. Find each interval where g is increasing and concave up.

Solution. Note that the domain of g is $(-\infty, 3) \cup(3, \infty)$. Now, our function g is increasing where its first derivative is positive, and g is concave up where its second derivative is positive, so we construct sign lines for both g^{\prime} and $g^{\prime \prime}$. First, we compute the first and second derivatives of g.

$$
g^{\prime}(x)=\frac{1}{(3-x)^{2}} \quad g^{\prime \prime}(x)=\frac{2}{(3-x)^{3}}
$$

The points which should be marked on our g^{\prime} sign line are those points where g^{\prime} is either 0 or undefined. Since g^{\prime} never takes on the value 0 , we just note that it is undefined at $x=3$, so that goes on our number line. Then, we check points in each interval on our number line to determine where g^{\prime} is positive or negative.

The procedure for the the $g^{\prime \prime}$ sign line is the same, and the sign line is given below.

Now, g is both increasing and concave up on $(-\infty, 3)$, so this is our answer.

$$
(-\infty, 3)
$$

3. Evaluate

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}
$$

Solution. Since 'plugging in' infinity gives an indeterminate form, we apply L'Hospital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}} & =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(e^{x}\right)}{\frac{d}{d x}\left(x^{2}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{e^{x}}{2 x}
\end{aligned}
$$

Again, 'plugging in' infinity gives an indeterminate form, so we apply L'Hospital's Rule again.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{e^{x}}{2 x} & =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(e^{x}\right)}{\frac{d}{d x}(2 x)} \\
& =\lim _{x \rightarrow \infty} \frac{e^{x}}{2} \\
& =\infty \\
& \infty
\end{aligned}
$$

