1. (2 points) Find the point on the graph $y=\frac{1}{2} x^{2}$ closest to the point $(0,1)$.

Solution. The distance between a point $\left(x, \frac{1}{2} x^{2}\right)$ on the curve $y=\frac{1}{2} x^{2}$ and the point $(0,1)$ is given by

$$
\begin{aligned}
d(x) & =\sqrt{(x-0)^{2}+\left(\frac{1}{2} x^{2}-1\right)^{2}} \\
& =\sqrt{x^{2}+\frac{1}{4} x^{4}-x^{2}+1} \\
& =\sqrt{\frac{1}{4}\left(x^{4}+4\right)} \\
& =\frac{1}{2} \sqrt{x^{4}+4} .
\end{aligned}
$$

Now, we find the absolute minimum of d on its domain $(-\infty, \infty)$.

$$
\begin{aligned}
d^{\prime}(x) & =\frac{d}{d x}\left(\frac{1}{2} \sqrt{x^{4}+4}\right) \\
& =\frac{1}{4} \frac{4 x^{3}}{\sqrt{x^{4}+4}} \\
& =\frac{x^{3}}{\sqrt{x^{4}+4}} .
\end{aligned}
$$

Since the denominator $\sqrt{x^{4}+4}$ is always positive, our only critical point is where the numerator is 0 , meaning $x=0$, and this point must represent an absolute minimum of d. Thus the closest point to $(0,1)$ on $y=\frac{1}{2} x^{2}$ is $(0,0)$.

$$
(0,0)
$$

2. (4 points) Sketch the graph of $f(x)$, given

$$
f(x)=\frac{-2 x+4}{2 x+2} \quad f^{\prime}(x)=\frac{-14}{(2 x+2)^{2}} \quad f^{\prime \prime}(x)=\frac{56}{(2 x+2)^{3}}
$$

Be sure to include asymptotes, x - and y-intercepts, where f is increasing/decreasing and concave up/down.

Solution. First, the horizontal asymptote(s):

$$
\lim _{x \rightarrow-\infty} \frac{-2 x+4}{2 x+2}=\frac{-2}{2}=-1 \quad \text { and } \quad \lim _{x \rightarrow+\infty} \frac{-2 x+4}{2 x+2}=\frac{-2}{2}=-1
$$

using either L'Hospital's Rule or the ratio of the leading coefficients. Now, the only candidate for a vertical asymptote is when $2 x+2=0$, meaning $x=-1$. Indeed,

$$
\lim _{x \rightarrow-1^{-}} \frac{-2 x+4}{2 x+2}=\frac{6}{0^{-}}=-\infty \quad \text { and } \quad \lim _{x \rightarrow-1^{+}} \frac{-2 x+4}{2 x+2}=\frac{6}{0^{+}}=+\infty
$$

so $x=-1$ does represent a vertical asymptote. For our x-intercept, we have $f(x)=0$ when $-2 x+4=0$, so $(2,0)$ is our x-intercept. For our y-intercept, we have $f(0)=2$, so $(0,2)$ is our y-intercept.
Both f^{\prime} and $f^{\prime \prime}$ are undefined at $x=-1$, so that point should go on both the f^{\prime} and $f^{\prime \prime}$ sign lines. Checking the sign of both f^{\prime} and $f^{\prime \prime}$ on either side of this point lets us finish our sign lines. Together with our intercepts and asymptotes, we can sketch our graph.

