1. Find an expression for the exact area under $f(x)=x^{3}+1$ from $x=0$ to $x=3$ as the limit of a Riemann sum with n subintervals of equal width. DO NOT EVALUATE IT!

Solution. For convenience, we use the right Riemann sum with n subintervals. The formula for rectangle width, Δx, and the formula for where we take our $i^{t h}$ rectangle height, x_{i}, are straight from the definitions,

$$
\begin{aligned}
& \Delta x=\frac{3-0}{n} \\
&=\frac{3}{n} \text { and } \\
& x_{i}=0+i \Delta x
\end{aligned}=\frac{3 i}{n} .
$$

Now, the formula for the exact area under $f(x) x^{3}+1$ from $x=0$ to $x=3$ as the limit of a Riemann sum is again from definition,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta_{x}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\left(\frac{3 i}{n}\right)^{3}+1\right) \frac{3}{n} . \\
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\left(\frac{3 i}{n}\right)^{3}+1\right) \frac{3}{n}
\end{gathered}
$$

2. Find $g(x)$, given $g^{\prime}(x)=\frac{1}{x}+x^{3}+e^{2 x}$ and $g(1)=\frac{1}{4}$.

Solution. We carefully antidifferentiate $g^{\prime}(x)$ and deduce the constant C using $g(1)=$ $\frac{1}{4}$. Using $\int \frac{1}{x} d x=\ln |x|$ with $\int x^{3} d x=\frac{1}{4} x^{4}$ and $\int e^{2 x} d x=\frac{1}{2} e^{2 x}$, we have

$$
g(x)=\ln |x|+\frac{1}{4} x^{4}+\frac{1}{2} e^{2 x}+C .
$$

Asserting

$$
g(1)=\ln (1)+\frac{1}{4}(1)^{4}+\frac{1}{2} e^{2}+C=0+\frac{1}{4}+\frac{e^{2}}{2}+C=\frac{1}{4},
$$

we have that $C=-\frac{e^{2}}{2}$, meaning $g(x)=\ln |x|+\frac{1}{4} x^{4}+\frac{1}{2} e^{2 x}-\frac{e^{2}}{2}$.

$$
g(x)=\ln |x|+\frac{1}{4} x^{4}+\frac{1}{2} e^{2 x}-\frac{e^{2}}{2}
$$

