1. Find an expression for the exact area under $f(x)=(x-1)^{2}$ from $x=1$ to $x=3$ as the limit of a Riemann sum with n subintervals of equal width. DO NOT EVALUATE IT!

Solution. For convenience, we use the right Riemann sum with n subintervals. The formula for rectangle width, Δx, and the formula for where we take our $i^{\text {th }}$ rectangle height, x_{i}, are straight from the definitions,

$$
\begin{aligned}
\Delta x & =\frac{3-1}{n}
\end{aligned}=\frac{2}{n} \text { and }, ~ \begin{aligned}
n & =1+\frac{2 i}{n} .
\end{aligned}
$$

Now, the formula for the exact area under $f(x)=(x-1)^{2}$ from $x=0$ to $x=3$ as the limit of a Riemann sum is again from definition,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta_{x}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{2 i}{n}-1\right)^{2} \frac{2}{n} \\
&=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{2 i}{n}\right)^{2} \frac{2}{n} \\
&=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{8 i^{2}}{n^{3}} \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{8 i^{2}}{n^{3}}
\end{aligned}
$$

2. Find $g(x)$, given $g^{\prime}(x)=\frac{1}{x^{2}}+\frac{1}{1+x^{2}}+e^{x}$ and $g(1)=e$.

Solution. We carefully antidifferentiate $g^{\prime}(x)$ and deduce the constant C using $g(1)=$ e. Using $\int \frac{1}{x^{2}} d x=-\frac{1}{x}$ with $\int \frac{1}{1+x^{2}} d x=\arctan (x)$ and $\int e^{x} d x=e^{x}$, we have

$$
g(x)=-\frac{1}{x}+\arctan (x)+e^{x}+C .
$$

Asserting

$$
g(1)=-1+\frac{\pi}{4}+e+C=e,
$$

we have that $C=1-\pi / 4$, meaning $g(x)=-\frac{1}{x}+\arctan (x)+e^{x}+1-\pi / 4$.

$$
g(x)=-\frac{1}{x}+\arctan (x)+e^{x}+1-\pi / 4
$$

