Quiz 9

1. Find each value of x where $f(x)=\ln (x)+100 x+\frac{1}{2} x^{2}$ has an inflection point.
We first find the second derivative of f :

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\mathrm{d}}{\mathrm{dx}} f(x) \\
& =\frac{1}{x}+100+x \\
f^{\prime \prime}(x) & =\frac{\mathrm{d}}{\mathrm{dx}} f^{\prime}(x) \\
& =-\frac{1}{x^{2}}+1 .
\end{aligned}
$$

We consider those values of x where $f^{\prime \prime}(x)$ is zero or undefined. Here, $f^{\prime \prime}(x)=0$ when $x=1$, and $f^{\prime \prime}(x)$ is undefined when $x=0$. Of course, the function is undefined at $x=0$, so we don't consider it.
Now, we note that to the left of $x=1$ the second derivative of f is negative, while to the right of $x=1$ the second derivative is positive. So $x=1$ indeed represents a point of inflection.
2. Let $g(x)=\frac{x^{4}-16}{x+2}$. Note that

$$
g^{\prime}(x)=3 x^{2}-4 x+4 \quad g^{\prime \prime}(x)=6 x-4
$$

Find each interval where g is increasing and concave down.
Our goal is to find the intervals in which g^{\prime} is positive and the intervals where $g^{\prime \prime}$ is negative and compute their intersection.
g^{\prime} is an upward-opening parabola. Furthermore, as the discriminant of $g^{\prime}, b^{2}-4 a c=-32$, is negative, we know that g^{\prime} has no real roots, ie. it never touches the x-axis. So g^{\prime} is always positive.
Now, to see where $g^{\prime \prime}$ is negative, we have

$$
6 x-4<0 \Longleftrightarrow x<\frac{2}{3}
$$

so g is concave down on $\left(-\infty, \frac{2}{3}\right)$. Together, g is increasing and concave down on $\left(-\infty, \frac{2}{3}\right)$.
3. Evaluate

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}} .
$$

Note that, naively,

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}=\frac{\infty}{\infty}
$$

so we may apply L'Hospital's Rule. Thus, we have

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}=\lim _{x \rightarrow \infty} \frac{\frac{\mathrm{~d}}{\mathrm{dx}} e^{x}}{\frac{\mathrm{~d}}{\mathrm{dx}} x^{2}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{2 x}
$$

Again, our limit works out to $\frac{\infty}{\infty}$, so we may apply L'Hospital's Rule again:

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{2 x}=\lim _{x \rightarrow \infty} \frac{\frac{\mathrm{~d}}{\mathrm{dx}} e^{x}}{\frac{\mathrm{~d}}{\mathrm{dx}} 2 x}=\lim _{x \rightarrow \infty} \frac{e^{x}}{2}=\infty
$$

Quiz 9

1. Find each value of x where $f(x)=e^{x}-100 x-\frac{1}{2} x^{2}$ has an inflection point.
We first find the second derivative of f :

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\mathrm{d}}{\mathrm{dx}} f(x) \\
& =e^{x}-100-x \\
f^{\prime \prime}(x) & =\frac{\mathrm{d}}{\mathrm{dx}} f^{\prime}(x) \\
& =e^{x}-1
\end{aligned}
$$

We consider those values of x where $f^{\prime \prime}(x)$ is zero or undefined. Here, $f^{\prime \prime}(x)$ is defined for all x, and $f^{\prime \prime}(x)=0$ when $x=0$. Now, we note that to the left of $x=0$ the second derivative of f is negative, while to the right of $x=0$ the second derivative is positive. So $x=0$ indeed represents a point of inflection.
2. Let $g(x)=\frac{x^{4}-16}{x-2}$. Note that

$$
g^{\prime}(x)=3 x^{2}+4 x+4 \quad g^{\prime \prime}(x)=6 x+4 .
$$

Find each interval where g is increasing and concave up.
Our goal is to find the intervals in which g^{\prime} is positive and the intervals where $g^{\prime \prime}$ is negative and then compute their intersection. g^{\prime} is an upward opening parabola. Furthermore, as the discriminant of $g^{\prime}, b^{2}-4 a c=-32$, is negative, we know that g^{\prime} has no real roots, ie. it never touches the x-axis. As such, g^{\prime} is always positive.
Now, to see where $g^{\prime \prime}$ is positive, we have

$$
6 x+4<0 \Longleftrightarrow x<-\frac{2}{3},
$$

so g is concave up on $\left(-\infty,-\frac{2}{3}\right)$. Together, g is both increasing and concave up on $\left(-\infty,-\frac{2}{3}\right)$.
3. Evaluate

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{2}}
$$

Note that, naively,

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{2}}=\frac{\infty}{\infty}
$$

so we may apply L'Hospital's Rule. Thus, we have

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{2}}=\lim _{x \rightarrow \infty} \frac{\frac{\mathrm{~d}}{\mathrm{dx}} \ln (x)}{\frac{\mathrm{d}}{\mathrm{dx}} x^{2}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{2 x}=\lim _{x \rightarrow \infty} \frac{1}{2 x^{2}}=0
$$

So L'Hospital's Rule has succeeded, and we are very happy.

