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Abstract

In this thesis, we explore the applications of pseudospherical surface theory to the theory of soliton
equations. We begin by surveying the classical differential geometry of curves and surfaces. Subse-
quently, we specialize to the case of pseudospherical surfaces, and discuss at length their connection
with local solutions to the sine-Gordon equation, including a classification of pseudospherical sur-
faces of revolution, and an analytical reformulation of a celebrated theorem of Hilbert. We then relate
transformations of pseudospherical surfaces to analytical machinery which allows one to produce a
wealth of soliton solutions to the sine-Gordon equation. After a brief introduction to the theory of
soliton equations, we discuss the manner in which a class of soliton equations beyond sine-Gordon
describe pseudospherical surfaces.
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1 Introduction

The goal of this thesis is to explore the connection between a certain class of surfaces, called pseudo-
spherical surfaces, and the sine-Gordon equation (sG):

𝜙𝑥𝑡 = sin𝜙,

and to ultimately suggest the deep relationship between classical surface theory and the theory of soliton
equations. Note that here, and in the remainder of this work, subscripts shall denote differentiation.

The first recorded mention of what we now call a soliton appeared in the writings of the Scottish
engineer John Scott Russell in 1845. He noticed that, when a horse-drawn boat moving through a canal
abruptly stopped, there amassed a wave of water which moved through the canal for one or two miles,
maintaining its shape save a very gradual diminution in size (see chapter zero of [3] for a more extensive
review of this history). Scientists debated for decades whether such stable waves could exist in shallow
canals. Although first written down by Boussinesq in 1877, the equation

𝑢𝑡 − 𝑢𝑥𝑥𝑥 − 6𝑢𝑢𝑥 = 0

was rediscovered by Korteweg and DeVries in 1895 as a model for the dynamics of water in shallow
canals, and is so named the KdV equation. Solitons were formally discovered in 1965 by Zabusky
and Kruskal [15], who numerically found such solutions to KdV as Russell wrote about one century
before. In particular, they noticed solutions consisting of localized wave packets which moved at constant
velocity with no change in form, going mostly unharmed upon interaction with each other. This result
was quite surprising, given that the KdV equation accounts for dispersive effects.

Two years later, Gardner, Greene, Kruskal, and Miura introduced the inverse scattering transform
as a method for solving KdV by solving an associated linear problem [8]. From this method arose many
natural consequences for the character of KdV: a formal interpretation of soliton solutions, so-called
Bäcklund Transformations, to be discussed in detail later on, and an infinite number of conserved quan-
tities, which we will not discuss in this thesis. This also gave a method for producing soliton solutions
explicitly. Since then, many nonlinear PDEs with abundant applications in mathematical physics have
been found to be solvable by some form of the inverse scattering transform, and these equations like-
wise exhibit soliton solutions, Bäcklund Transformations, and infinitely many conversed quantities, so
are termed soliton equations. In the literature, these PDEs are often also referred to as integrable or
Hamiltonian systems, and they can indeed be understood as infinite-dimensional Hamiltonian systems,
but we shall exclusively use the term ’soliton equation.’

As the reader may have guessed, sG is a soliton equation, so exhibits soliton solutions, Bäcklund
Transformations, and an associated linear problem which one can apply the inverse scattering transform
to. Our goal is to produce all of this machinery without using any results from soliton theory. This may
seem strange, but this is actually what happened historically: the associated linear problem essentially
comes from the fundamental equations for surfaces, which were even partially known to Gauss, and
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the geometers of the late nineteenth century found that pseudospherical surfaces admit certain transfor-
mations which naturally correspond to transformations of sG solutions. In fact, the Bäcklund Trans-
formations enjoyed by all soliton equations get their name from a transformation of pseudospherical
surfaces discovered by the Swedish mathematician Albert Victor Bäcklund. So, the geometers of the
time were unknowingly laying foundations for the theory of soliton equations decades before the birth
of the subject!

Now that we have our sights set, let us give a brief overview of the content to be discussed in this
thesis. We will begin by reviewing the classical theory of curves and surfaces in ℝ3, assuming from the
reader a reasonable familiarity with multivariable calculus, linear algebra, and general topology. Then,
we will discuss pseudospherical surfaces and their connection with sG. We will linger on this relation-
ship, deriving the associated linear problem for sG which is amenable to inverse scattering, exploring
pseudosherical surfaces of revolution and their sG solutions, as well as recasting a theorem of Hilbert in
terms of sG. We will then move on to the transformations of pseudospherical surfaces, which ultimately
allow one to produce a wealth of solutions to sG by mostly algebraic means. We then tersely discuss the
inverse scattering method for solving the KdV equation, and suggest how the method is generalized to
become applicable to many other soliton equations. Lastly, we state the relationship between the inverse
scattering method and the classical theory of pseudospherical surfaces which we will have developed,
mentioning also the other, more direct relationships which surface theory has with various soliton equa-
tions. Keep in mind that our discussion of inverse scattering will be quite informal; the focus of this
thesis is geometry, and we only wish to convey the basic ideas of soliton theory. The presentation of
this subject only stands to show that the simple and beautiful geometry which we discuss has incredibly
powerful applications in nonlinear PDE theory and mathematical physics.

2 The Classical Theory of Curves and Surfaces

2.1 Curves in ℝ3

Before discussing the theory of surfaces, we must understand their one-dimensional analogue, namely
curves. The basis of surface theory, and Riemannian geometry for that matter, lies in the description of
the behavior of curves on a surface (or manifold). In what follows, we will use differentiable to mean
that a function is as many times differentiable as we require, and smooth to mean that a function has
derivatives of all orders.
Definition 2.1.1. A differentiable curve is a differentiable map 𝛼 ∶ 𝐼 → ℝ3, where 𝐼 is a connected
subset of ℝ.

Note that there is a distinction between a curve and its image: a curve 𝛼 ∶ 𝐼 → ℝ3 is, by definition,
a map, while its image 𝛼(𝐼) is called the trace of the curve. There can be many distinct curves which
share same trace, and we will see why it is important to distinguish them.
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For 𝛼 ∶ 𝐼 → ℝ3 a differentiable curve and 𝑡 ∈ 𝐼, the derivative 𝛼′(𝑡) can be viewed as a vector
based at 𝛼(𝑡) describing the velocity and direction in which a curve is traveling at 𝑡; in other words, we
can view 𝛼′ ∶ 𝐼 → ℝ3 as a tangent vector field along the curve. If 𝛼′(𝑡) = 0 for some 𝑡, then there is no
tangent line to the curve at 𝑡, and we cannot understand the curve’s behavior through its tangent vector
field, so we will dispense with this case by considering the following refinement of focus:
Definition 2.1.2. A differentiable curve 𝛼 ∶ 𝐼 → ℝ3 is regular if 𝛼′(𝑡) ≠ 0 for all 𝑡 ∈ 𝐼.

This allows us to make another central definition:
Definition 2.1.3. For 𝛼 ∶ 𝐼 → ℝ3 a regular curve, and 𝑡0 ∈ 𝐼, the arc length of 𝛼 from 𝑡0 is defined to
be

𝑠(𝑡) = ∫

𝑡

𝑡0
|𝛼′(𝑡)|𝑑𝑡.

Here we are using the usual Euclidean norm for vectors in ℝ3. Since 𝛼′(𝑡) is nonzero, we have that
the function 𝑠(𝑡) is differentiable, and 𝑠′(𝑡) = |𝛼′(𝑡)|. It is clear that the parameter 𝑡 measures the arc
length of the curve from some initial point 𝑡0 if and only if |𝛼′(𝑡)| ≡ 1; that is, our curve is moving at
constant unit speed. We will say that such a curve is parametrized by arc length. From now on, we will
consider only those regular curves which are parametrized by arc length. We can always reparametrize
a curve so that this is so, with the caveat that the domain of definition of the curve may change in the
process.

2.1.1 The Frenet-Serret Formulas

We will now see that the geometry of a sufficiently nice curve in ℝ3 is described completely by two
smooth functions, namely its curvature and torsion. To develop this theory, we will gives names to the
various actors involved, beginning with the following:
Definition 2.1.4. For 𝛼 ∶ 𝐼 → ℝ3 a regular curve parametrized by arc length, we define 𝑡(𝑠) = 𝛼′(𝑠) to
be the tangent vector field to the curve.

If we take another derivative, we see that 𝛼′′ ∶ 𝐼 → ℝ3 represents the curves acceleration; that is,
how quickly and in which direction the tangent vector is changing as we move along the curve 𝛼.
Definition 2.1.5. For a regular curve 𝛼 ∶ 𝐼 → ℝ3 which is parametrized by arc length, we define
𝜅(𝑠) = |𝛼′′(𝑠)| to be the curvature of 𝛼 at 𝑠.

The curvature of a curve has a more directly geometric interpretation when 𝜅 ≠ 0. By placing a
circle of radius 1∕𝜅(𝑠) in ℝ3 such that its center point is 𝛼(𝑠) + 𝛼′′(𝑠), and the circle lies in the plane
spanned by 𝑡(𝑠) and 𝛼′′(𝑠), we see that the the point 𝛼(𝑠) lies on the circle, and the tangent to the circle
at 𝛼(𝑠) lies in the line spanned by 𝑡(𝑠). Thus, the curvature 𝜅 gives some intuitive notion of the radius
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of curvature of a curve at any point, namely the radius of a circle which locally resembles the curve. If
you like, this works equally well for 𝜅 = 0, since the curve is 𝛼 is tangent to a line there, which can be
thought of as a circle of infinite radius.

A quick computation shows that the curvature of a curve is everywhere zero if and only if the curve
is a straight line. At points where 𝜅(𝑠) ≠ 0, there is yet more interesting geometry going on.
Definition 2.1.6. For 𝛼 ∶ 𝐼 → ℝ3 a regular curve parametrized by arc length, and 𝑠 ∈ 𝐼 a point at
which 𝜅(𝑠) ≠ 0, the normal vector 𝑛(𝑠) to the curve 𝛼 at 𝑠 is defined by the formula

𝛼′′(𝑠) = 𝜅(𝑠)𝑛(𝑠)

.

Since 𝑡(𝑠) ⋅ 𝑡(𝑠) = 1, differentiating gives that 𝛼′′(𝑠) ⋅ 𝑡(𝑠) = 0, so that 𝑛(𝑠) ⋅ 𝑡(𝑠) = 0 for all 𝑠. Thus,
the normal vector to a curve is, in fact, normal to its tangent vector at all points for which 𝜅 ≠ 0. The
span of the vectors 𝑡(𝑠) and 𝑛(𝑠) uniquely define a plane in ℝ3 containing the point 𝛼(𝑠), which we call
the osculating plane of the curve 𝛼 at 𝑠. We can likewise consider this plane to be defined by the unit
vector 𝑡(𝑠) ∧ 𝑛(𝑠), where ∧ is the standard vector (or cross) product in ℝ3.

Definition 2.1.7. For 𝛼 ∶ 𝐼 → ℝ3 a regular curve parametrized by arc length, and 𝑠 ∈ 𝐼 a point at
which 𝜅(𝑠) ≠ 0, the binormal vector 𝑏(𝑠) to the curve 𝛼 is given by

𝑏(𝑠) = 𝑡(𝑠) ∧ 𝑛(𝑠).

We have now constructed a very natural orthonormal frame for a regular curve with non-vanishing
curvature, namely the vector fields 𝑡, 𝑛, and 𝑏, which comprise the Frenet frame of the curve. From
now on we will consider only those curves for which 𝜅 ≠ 0 holds everywhere. From our definition of
the binormal 𝑏, we see that its derivative 𝑏′(𝑠) measures the rate at which the curve bends away from
its osculating plane at 𝑠. Since |𝑏(𝑠)| ≡ 1, its tangent vector 𝑏′(𝑠) is normal to 𝑏(𝑠). Moreover, since the
vector product obeys a Leibnizian rule for differentiation, we have that

𝑏′(𝑠) = 𝑡′(𝑠) ∧ 𝑛(𝑠) + 𝑡(𝑠) ∧ 𝑛′(𝑠).

Since 𝑡′(𝑠) is parallel to 𝑛(𝑠), the first term vanishes, and we see that 𝑏′(𝑠) is normal to 𝑡(𝑠),which implies
that 𝑏′(𝑠) is parallel to the normal vector 𝑛(𝑠). Thus, we can make another definition:
Definition 2.1.8. For 𝛼 ∶ 𝐼 → ℝ3 a regular curve parametrized by arc length such that 𝜅(𝑠) ≠ 0 for all
𝑠 ∈ 𝐼, we define the torsion 𝜏(𝑠) of the curve 𝛼 by the formula

𝜏(𝑠) = |𝑏′(𝑠)|.

As with our definition of the curvature 𝜅, we see that 𝑏′(𝑠) = 𝜏(𝑠)𝑛(𝑠). We will call a curve whose
trace lies entirely in some plane 𝑃 ⊂ ℝ3 a plane curve. With this definition, we can immediately state
the following:
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Proposition 2.1.1. Let 𝛼 ∶ 𝐼 → ℝ3 a regular curve parametrized by arc length such that 𝜅(𝑠) ≠ 0 for
all 𝑠 ∈ 𝐼. Then 𝛼 is a plane curve if and only if 𝜏 ≡ 0.

Proof. Supposing that 𝛼 is a plane curve, we have that the curve lies entirely in the plane spanned by
𝑡(𝑠) and 𝑛(𝑠) for any 𝑠 ∈ 𝐼, which is exactly the osculating plane of 𝛼 at some 𝑠. Since the osculating
plane 𝛼(𝑠) is independent of the point 𝑠 ∈ 𝐼, we have that the binormal 𝑏 forms a parallel vector field
along alpha, so that 𝜏 ≡ 0.

Conversely, if 𝜏 ≡ 0, then the vector field 𝑏 is constant on 𝐼, and in particular the plan spanned by
𝑡(𝑠) and 𝑛(𝑠) is independent of the point 𝑠 ∈ 𝐼. Thus, the curve lies entirely in the plane spanned by 𝑡(𝑠)
and 𝑛(𝑠) for any 𝑠 ∈ 𝐼.

Let us collect what we know about our curve 𝛼.We have the Frenet frame {𝑡, 𝑛, 𝑏}, and by definition
we know that 𝑡′ = 𝜅𝑛 and 𝑏′ = 𝜏𝑛. Since 𝑛 = 𝑏 ∧ 𝑡, differentiating gives 𝑛′ = −𝜅𝑡 − 𝜏𝑏. So, we have the
relations

𝑡 = 𝜅𝑛

𝑛′ = −𝜅𝑡 − 𝜏𝑏

𝑏′ = 𝜏𝑛.

These are know as the Frenet-Serret formulas. We have expressed the derivatives of our framing
vector fields with respect to the curve’s parameter in terms of the vector fields themselves, as well as the
curvature and torsion functions. Since curvature measures a curves deviation from a straight line, and
torsion measures its deviation from a plane, and we have no more dimensions in which the curve may
’bend,’ it stands to reason that these curvature and torsion functions completely describe the curve in
some sense. This is indeed the case:
Theorem. (Fundamental Theorem of Curves) Given 𝜅, 𝜏 ∶ 𝐼 → ℝ differentiable functions such that
𝜅 > 0, there exists 𝛼 ∶ 𝐼 → ℝ3, a regular curve parametrized by arc length such that 𝜅 and 𝜏 are
the curvature and torsion of the curve, respectively, and any other curve 𝛽 ∶ 𝐼 → ℝ3 having the same
curvature and torsion as 𝛼 differs from 𝛼 by rigid motion; that is, rotation and translation.

The theorem follows from an existence and uniqueness theorem in ODE theory, see pages 315-317
of [4] and the references therein.

2.2 Regular Surfaces

We now move up one dimension and focus our attention to regular surfaces in ℝ3. Although perhaps not
transparent on a first reading, the definition is motivated by the desire to have some notion of calculus
on geometric objects which sit nicely in ℝ3. Although Euler made progress in understanding the local
behavior of surfaces in 1760, it was largely Gauss who began the study of surfaces in the manner which
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we will discuss, and it was his work which motivated the development of the more general theory of
Riemannian geometry, which Riemann set forth while working under Gauss.
Definition 2.2.1. A subset 𝑆 ⊂ ℝ3 is a regular surface if, for each 𝑝 ∈ 𝑆, there exists a neighborhood
𝑉 ⊂ 𝑆 of 𝑝 and a differentiable homeomorphism x ∶ 𝑈 → 𝑉 , where 𝑈 is an open subset of ℝ2, such
that the differential 𝑑x𝑞 ∶ ℝ2 → ℝ3 is injective for all 𝑞 ∈ 𝑈.

Note that we are using the subspace topology of 𝑆 ⊂ ℝ3. In particular, a set 𝑉 ⊂ 𝑆 is open in
𝑆 if and only if there is some open set 𝑈 ⊂ ℝ3 such that 𝑈 ∩ 𝑆 = 𝑉 . Thus, we require a regular sur-
face to be locally homeomorphic to ℝ2 in such a way that the homeomorphism is differentiable in the
sense of standard multivariable calculus. Note that from hereon, we will always assume the domain of
a parametrization to be open, and more generally any sets named 𝑈 or 𝑉 are assumed to be open. The
maps x ∶ 𝑈 ⊂ ℝ2 → 𝑆 from the definition are referred to as parametrizations or coordinate neigh-
borhoods of the surface. The regularity condition requiring that the differential of each parametrization
is everywhere injective is really just the two-dimensional analogue of the regularity condition on curves,
namely that 𝛼′ ≠ 0. We will see that this condition allows us to associate to each point on a regular
surface a tangent plane, which is essential for the study of surfaces.

Roughly speaking, a regular surface is a collection of open sets in the plane stitched together in a
coherent manner. As it stands though, we see that there may be many coordinate expressions for the same
point on a surface, so that it is important to understand how we may pass from between parametrizations
of our surface.
Proposition 2.2.1. (Change of Parameters) For a regular surface 𝑆, a point 𝑝 ∈ 𝑆, and parametriza-
tions x ∶ 𝑈 ⊂ ℝ2 → 𝑆 and y ∶ 𝑉 ⊂ ℝ2 → 𝑆 such that 𝑝 ∈ x(𝑈 ) ∩ y(𝑉 ) = 𝑊 , the change of parameter
map x−1 ◦ y ∶ y−1(𝑊 ) → x−1(𝑊 ) is differentiable with differentiable inverse.

Thus, we can describe a reasonable notion of differentiability for a real-valued function 𝑓 ∶ 𝑆 → ℝ,
where 𝑆 is a regular surface. In particular, we will say that this map is differentiable at 𝑝 ∈ 𝑆 if, for
any x ∶ 𝑈 ⊂ ℝ2 → 𝑆 a parametrization about 𝑝, the composition 𝑓 ◦ x ∶ 𝑈 → ℝ is differentiable
at x−1(𝑝). We see by change of parameters that differentiability of 𝑓 at 𝑝 does not depend on the cho-
sen parametrization about 𝑝, since choosing a different parametrization amounts to composition by a
differentiable map. We can then also state the following:
Definition 2.2.2. Let 𝜙 ∶ 𝑉1 ⊂ 𝑆1 → 𝑆2, be a map from an open subset 𝑉1 of the regular surface 𝑆1 to
the regular surface 𝑆2. Moreover, for some 𝑝 ∈ 𝑉1, let x1 ∶ 𝑈1 ⊂ ℝ2 → 𝑆1 be a parametrization about
𝑝 and x2 ∶ 𝑈2 ⊂ ℝ2 → 𝑆2 a parametrization about 𝜙(𝑝) such that 𝜙(x1(𝑈1)) ⊂ x2(𝑈2). Then we say
that the map 𝜙 is differentiable at 𝑝 if the map

x−12 ◦ 𝜙 ◦ x1 ∶ 𝑈1 → 𝑈2

is differentiable at x−11 (𝑝).
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Once again, this definition does not rely on the parametrizations chosen. This allows us to establish
a notion of isomorphism for regular surfaces: a diffeomorphism 𝜙 ∶ 𝑆1 → 𝑆2 of regular surfaces
is a differentiable map with differentiable inverse. Surfaces which admit a diffeomorphism are called
diffeomorphic. Although it is not a trivial statement, two surfaces are diffeomorphic if and only if they
are homeomorphic, so this notion can be thought of as properly topological despite involving the notion
of differentiability. We will later see the more discerning notion of isometry which distinguishes surfaces
beyond their topology.

2.2.1 The Tangent Plane

We will now develop a better understanding of regular surfaces and maps between them by introducing
the notion of the tangent plane.
Definition 2.2.3. For 𝑆 a regular surface and 𝑝 ∈ 𝑆, a tangent vector to 𝑆 at 𝑝 is the tangent vector
𝛼′(0) of a differentiable curve 𝛼 ∶ (−𝜖, 𝜖) → 𝑆 with 𝛼(0) = 𝑝.

We now see how the regularity condition of our parametrizations is crucial for our study of the
geometry of surface.
Proposition 2.2.2. For x ∶ 𝑈 ⊂ ℝ2 → 𝑆 a parametrization of the regular surface 𝑆, and 𝑞 ∈ 𝑈 such
that x(𝑞) = 𝑝, the two dimensional vector space

𝑑x𝑞(ℝ2) ⊂ ℝ3

is the set of tangent vectors to 𝑆 at 𝑝.

Note that 𝑑x𝑞(ℝ2) is, in general, an affine subspace of ℝ3, meaning that it need not contain the
origin of ℝ3. However, it still has the structure of a vector space in its own right. Thus, we can identify
the tangent plane of 𝑆 at 𝑝, referred to as 𝑇𝑝𝑆, with the space 𝑑x𝑞(ℝ2), since it does not depend on our
choice of parametrization by the proposition. Note that our choice of parametrization gives us a basis
for the tangent plane 𝑇𝑝𝑆, namely the vectors (𝜕x∕𝜕𝑢)(𝑞) = x𝑢 and (𝜕x∕𝜕𝑣)(𝑞) = x𝑣, referred to as the
basis associated to x. In particular, any vector in 𝑇𝑝𝑆 has a unique expression as a linear combination of
x𝑢(𝑞) and x𝑣(𝑞).We are now prepared to define a central notion of surface theory, namely the differential
of a map, which provides a pointwise linear representation for a differentiable map by describing its
associated action on the tangent spaces of the surfaces.
Definition 2.2.4. Let 𝜙 ∶ 𝑆1 → 𝑆2 be a differentiable map of regular surfaces. For each 𝑝 ∈ 𝑆1, and
each 𝑣 ∈ 𝑇𝑝𝑆1, choose a differentiable curve 𝛼 ∶ (−𝜖, 𝜖) → 𝑆1 such that 𝛼(0) = 𝑝 and 𝛼′(0) = 𝑣. Letting
𝛽 ∶ (−𝜖, 𝜖) → 𝑆2 be the differentiable curve defined by 𝛽 = 𝜙 ◦ 𝛼, the map 𝑑𝜙𝑝 ∶ 𝑇𝑝𝑆1 → 𝑇𝜙(𝑝)𝑆2

given by 𝑑𝜙𝑝(𝑣) = 𝛽′(0) is called the differential of 𝜙 at 𝑝.

The differential of a map is a linear map on each tangent plane which does not depend on the choice
of curve 𝛼. Indeed, in a particular parametrization x(𝑢, 𝑣) ∶ 𝑈 ⊂ ℝ2 → 𝑆1, our curve 𝛼 has coordinate

12



expression 𝛼(𝑡) = (𝑢(𝑡), 𝑣(𝑡)), and the function 𝜙 has coordinate expression 𝜙(𝑢, 𝑣) = (𝜙1(𝑢, 𝑣), 𝜙2(𝑢, 𝑣)).
Thus, for 𝛼′(0) = (𝑢′(0), 𝑣′(0)), we obtain the expression

𝑑𝜙𝑝(𝑣) =

(

𝜕𝜙1∕𝜕𝑢 𝜕𝜙1∕𝜕𝑣
𝜕𝜙2∕𝜕𝑢 𝜕𝜙2∕𝜕𝑣

)(

𝑢′(0)
𝑣′(0)

)

.

Since the differential only depends on the tangent vector 𝛼′(0), the choice of curve does not affect the
value of 𝑑𝜙𝑝(𝑣). There is, unsuprisingly, a nice relationship between the differential of a map and the
character of the differentiable map itself. To state this relationship, we first note that a map 𝜙 ∶ 𝑆1 → 𝑆2

is called a local diffeomorphism at 𝑝 ∈ 𝑆1 if there exists a neighborhood 𝑈 ⊂ 𝑆1 of 𝑝 such that the
restriction 𝜙|𝑈 ∶ 𝑈 → 𝑆2 is a diffeomorphism onto its image. We can then say the following
Proposition 2.2.3. If 𝜙 ∶ 𝑆1 → 𝑆2 is a differentiable map between regular surfaces, and for some
𝑝 ∈ 𝑆1, the differential 𝑑𝜙𝑝 is an isomorphism of vector spaces, then 𝜙 is a local diffeomorphism at 𝑝.

This is simply the inverse function theorem of multivariable calculus stated for surfaces.

2.2.2 The First Fundamental Form

This section begins the study of differential geometry proper for regular surfaces, in that we will begin
to discuss the machinery associated to performing measurements on regular surfaces. In the previous
section, we associated to any point 𝑝 of a regular surface 𝑆 the tangent plane 𝑇𝑝𝑆 sitting in ℝ3. We can
make 𝑇𝑝𝑆 into an inner product space by simply using the inner product induced by that of ℝ3. We will
denote this inner product by ⟨ , ⟩𝑝, or sometimes simply ⟨ , ⟩ when the point of evaluation is clear. We
can then introduce the first fundamental form, which will allow us to measure lengths, angles, and areas
on regular surfaces.
Definition 2.2.5. For 𝑆 a regular surface and 𝑝 ∈ 𝑆, define the first fundamental form of 𝑆 at 𝑝 to be
the quadratic form 𝐼𝑝 ∶ 𝑇𝑝𝑆 → ℝ given by the formula

𝐼𝑝(𝑣) = ⟨𝑣, 𝑣⟩𝑝.

Let x(𝑢, 𝑣) ∶ 𝑈 ⊂ ℝ2 → 𝑆 be a parametrization for our surface. Choosing a differentiable curve
𝛼 ∶ (−𝜖, 𝜖) → 𝑆 ∩ x(𝑈 ), we can write the curve 𝛼 in coordinates as 𝛼(𝑡) = (𝑢(𝑡), 𝑣(𝑡)), and thus we can
write the first fundamental form at points 𝛼(𝑡) ∈ 𝑆 as

𝐼𝑝(𝛼′) = 𝐸(𝑢′)2 + 2𝐹𝑢′𝑣′ + 𝐺(𝑣′)2,

where we define
𝐸(𝑢, 𝑣) = ⟨x𝑢, x𝑢⟩𝛼(𝑡)

𝐹 (𝑢, 𝑣) = ⟨x𝑢, x𝑣⟩𝛼(𝑡)

𝐺(𝑢, 𝑣) = ⟨x𝑣, x𝑣⟩𝛼(𝑡)
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to be the coefficients of the first fundamental form at 𝑇𝑝𝑆 in the basis associated to x. Note that the
parameter 𝑡 was only removed to avoid notational clutter. We thus obtain three differentiable function
𝐸, 𝐹 ,𝐺 ∶ 𝑈 → ℝ which tell us concretely how to compute inner products in 𝑇𝑝𝑆 whenever 𝑝 ∈ x(𝑈 ).
We can then define the length of curves on a surface intrinsically; that is, without direct reference to the
ambient Euclidean space. Assuming that 𝛼 ∶ 𝐼 → 𝑆 is a smooth curve on 𝑆, we define the arc length
from 𝑡0 ∈ 𝐼 to be

𝑠(𝑇 ) = ∫

𝑇

𝑡0
|𝛼′(𝑡)|𝑑𝑡 = ∫

𝑇

𝑡0

√

𝐼𝛼(𝑡)(𝛼′(𝑡)) 𝑑𝑡.

Additionally, for curves 𝛼, 𝛽 ∶ 𝐼 → 𝑆 such that 𝑝 = 𝛼(𝑡0) = 𝛽(𝑡0), we can define the angle 𝜙 between
the curves at their intersection to be given by

cos𝜙 =
⟨𝛼′(𝑡0), 𝛽′(𝑡0)⟩𝑝
|𝛼′(𝑡0)||𝛽′(𝑡0)|

.

For coordinate curves in a parametrization, we see that

cos𝜙 =
⟨x𝑢, x𝑣⟩𝑝
|x𝑢||x𝑣|

= 𝐹
√

𝐸𝐺
.

Thus, the coordinate curves of a parametrization are orthogonal at some 𝑝 ∈ 𝑆 if and only if 𝐹 (𝑝) = 0.
Finally, computations of area can be done according to the following:
Definition 2.2.6. For 𝑅 ⊂ 𝑆 a bounded region contained in the image of a parametrization x ∶ 𝑈 ⊂
ℝ2 → 𝑆, we define

∬x−1(𝑅)
|x𝑢 ∧ x𝑣|𝑑𝑢𝑑𝑣

to be the area of the region 𝑅.

This does not depend on the parametrization because of cancelation due to the Jacobian associated
to the change of parameters. We note also that we have the expression

|x𝑢 ∧ x𝑣| =
√

𝐸𝐺 − 𝐹 2

in terms of fundamental form coefficients, and by definition of the first fundamental form, we have that
𝐸𝐺 − 𝐹 2 > 0, since it defines an inner product on 𝑆 which is, of course, positive-definite.. With this
machinery at hand, one can calculate the area of a host of surfaces by computing its first fundamental form
coefficients in particular parametrizations and performing integration, which is usually not so difficult.

2.2.3 The Gauss Map and the Second Fundamental Form

We now explore more deeply the geometry of surfaces by making use of the ambient Euclidean space.
To begin, notice that for any parametrization of a regular surface x ∶ 𝑈 ⊂ ℝ2 → 𝑆, we can define the
unit normal vector field 𝑁 ∶ x(𝑈 ) → 𝑆2 by the formula

𝑁(𝑝) =
x𝑢 ∧ x𝑣
|x𝑢 ∧ x𝑣|

(x−1(𝑝)).
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We can always do this locally, but we cannot necessarily always extend this to a differentiable field of
unit normal vectors on the entire surface, the canonical counterexample being the Möbius band. This
calls for the following definition:
Definition 2.2.7. A regular surface 𝑆 is orientable if there exists a differentiable unit vector field 𝑁 ∶
𝑆 → 𝑆2 such that 𝑁(𝑝) is normal to 𝑇𝑝𝑆 for all 𝑝 ∈ 𝑆.

This is equivalent to the requirement that there exists a family of parametrizations and domains
{(x𝛼 , 𝑈𝛼)}𝛼∈𝐽 such that ⋃𝛼∈𝐽 x𝛼(𝑈𝛼) = 𝑆, and the differential of the change of parameters x−1𝛽 ◦ x𝛼
has positive determinant for all 𝛼, 𝛽 ∈ 𝐽 such that 𝑈𝛼 ∩ 𝑈𝛽 ≠ ∅, but we will not use this interpretation
in what follows.

For a regular orientable surface 𝑆, the differentiable unit normal vector field𝑁 ∶ 𝑆 → 𝑆2 is called
the Gauss map. The differential of the Gauss map at some 𝑝 ∈ 𝑆 is a linear map 𝑑𝑁𝑝 ∶ 𝑇𝑝𝑆 → 𝑇𝑁(𝑝)𝑆2,
and a little thought justifies that these tangent planes can be regarded as the same object, so that 𝑑𝑁𝑝

can be regarded as a linear endomorphism on 𝑇𝑝𝑆. Indeed, if we regard each of these tangent planes as
affine subspaces of ℝ3, where 𝑆2 is embedded in ℝ3 in the standard way, we see that they are parallel.

If we have some curve on our surface 𝑆, its composition under 𝑁, sometimes referred to as its
spherical image, is the restriction of the unit normal vector field to the curve. Moreover, the differential
of this map at some point 𝑝 is the vector in 𝑇𝑝𝑆 which describes how the unit normal vector is changing
at 𝑝 as one moves along the curve. Thus, the differential of the Gauss map captures how a surface is
bending away from its tangent plane as one moves in some specified direction away from an initial point
𝑝. For this reason, the map 𝑑𝑁𝑝 is the natural place to explore some notion of curvature for surfaces.
We first remark an important property of the Gauss map:
Definition 2.2.8. The differential 𝑑𝑁𝑝 ∶ 𝑇𝑝𝑆 → 𝑇𝑝𝑆 of the Gauss map is self-adjoint.

We will include the proof, mostly to recall the definition of a self-adjoint linear operator.

Proof. Let x(𝑢, 𝑣) ∶ 𝑈 ⊂ ℝ2 → 𝑆 be a parametrization of the oriented surface 𝑆 about some point
𝑝 ∈ 𝑆, and set 𝑑𝑁𝑝(x𝑢) = 𝑁𝑢 and 𝑑𝑁𝑝(x𝑣) = 𝑁𝑣. By differentiating the identities ⟨𝑁, x𝑢⟩ = 0 and
⟨𝑁, x𝑣⟩ = 0, and using the fact that x𝑢𝑣 = x𝑣𝑢, we obtain that

⟨𝑑𝑁𝑝(x𝑢), x𝑣⟩ = ⟨𝑁𝑢, x𝑣⟩ = −⟨𝑁, x𝑢𝑣⟩ = ⟨𝑁𝑣, x𝑢⟩ = ⟨x𝑢, 𝑑𝑁𝑝(x𝑣)⟩.

Since {x𝑢, x𝑣} is a basis for 𝑇𝑝𝑆, self-adjointness in the general case follows.

The fact that 𝑑𝑁𝑝 is self-adjoint allows us to define a symmetric bilinear form on 𝑇𝑝𝑆 sending a
vectors 𝑣,𝑤 ∈ 𝑇𝑝𝑆 to the inner product ⟨𝑑𝑁𝑝(𝑣), 𝑤⟩𝑝 = ⟨𝑣, 𝑑𝑁𝑝(𝑤)⟩𝑝, , which justifies the following:
Definition 2.2.9. The quadratic form 𝐼𝐼𝑝 ∶ 𝑇𝑝𝑆 → ℝ defined by

𝐼𝐼𝑝(𝑣) = −⟨𝑑𝑁𝑝(𝑣), 𝑣⟩𝑝

is called the second fundamental form of 𝑆 at 𝑝.
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Likewise for the first fundamental form, we can obtain coordinate expressions for the second fun-
damental form. Let x ∶ 𝑈 ⊂ ℝ2 → 𝑆 be a parametrization for the regular, oriented surface 𝑆, and
𝛼 ∶ (−𝜖, 𝜖) → 𝑆 ∩ x(𝑈 ) a differentiable curve with coordinate expression be 𝛼(𝑡) = (𝑢(𝑡), 𝑣(𝑡)). Then we
have that

𝐼𝐼𝑝(𝛼′) = 𝑒(𝑢′)2 + 2𝑓𝑢′𝑣′ + 𝑔(𝑣′)2,

where
𝑒 = −⟨𝑁𝑢, x𝑢⟩

𝑓 = −⟨𝑁𝑣, x𝑢⟩ = −⟨𝑁𝑢, x𝑣⟩

𝑔 = −⟨𝑁𝑣, x𝑣⟩

are the coefficients of the second fundamental form expressed in the basis associated to the parametriza-
tion x. Again, we obtain three differentiable functions 𝑒, 𝑓 , 𝑔 ∶ 𝑈 → ℝ which tell us how to compute
the differential of the Gauss map at any point of x(𝑈 ).

We will be able to understand the second fundamental form in terms of the behavior of curves on
a surface passing through a point via the concept of normal curvature, first studied by Euler.
Definition 2.2.10. For a regular curve 𝛼 ∶ (−𝜖, 𝜖) → 𝑆 on the regular, oriented surface 𝑆 such that
𝛼(0) = 𝑝 ∈ 𝑆, let 𝜅 be the curvature of 𝛼 at 𝑝, and let cos 𝜃 = ⟨𝑛,𝑁⟩𝑝, where 𝑛 is the normal vector to
𝛼 at 𝑝, and 𝑁 is the normal vector to 𝑆 at 𝑝. Then the value

𝑘𝑛 = 𝜅 cos 𝜃

is the normal curvature of 𝛼 at 𝑝.

Intuitively, the normal curvature is the length of the projection of the acceleration vector 𝛼′′ onto
the normal vector 𝑁 to the surface; that is, it measures the extent to which 𝛼 is forced to curve in order
to remain on the surface. Note that the value of normal curvature does not depend on the orientation or
parametrization of the curve, so we could have just as well defined the normal curvature according to
the trace of a curve, rather than the curve itself. We then have the following relationship between the
second fundamental form and normal curvature:
Proposition 2.2.4. Let 𝛼 ∶ (−𝜖, 𝜖) → 𝑆 be a regular curve parametrized by arc length on the regular
surface, oriented surface 𝑆 such that 𝛼(0) = 𝑝 ∈ 𝑆 and let 𝑛 be the normal vector of 𝛼 at 𝛼(0). Then

𝐼𝐼𝑝(𝛼′(0)) = 𝑘𝑛(𝑝).

Proof. Since 𝛼′(𝑠) ∈ 𝑇𝛼(𝑠)𝑆 for all 𝑠 ∈ (−𝜖, 𝜖), we have that ⟨𝑁(𝑠), 𝛼′(𝑠)⟩𝛼(𝑠) = 0, where 𝑁(𝑠) is the
spherical image 𝛼. Thus, we have that

𝐼𝐼𝑝(𝛼′(0)) = −⟨𝑑𝑁𝑝(𝛼′(0)), 𝛼′(0)⟩𝑝 = −⟨𝑁 ′(0), 𝛼′(0)⟩𝑝 = ⟨𝑁(0), 𝛼′′(0)⟩𝑝,

where the last identity is obtained by differentiating the expression remarked to be zero above. Well, the
last expression is ⟨𝑁(0), 𝜅𝑛(0)⟩𝑝, which is precisely the normal curvature of 𝛼 at 𝑝, namely 𝑘𝑛(𝑝).
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Thus, the normal curvature at 𝑝 of a curve passing through 𝑝 is determined entirely by its tangent
vector there. Moreover, since we are only considering unit tangent vectors, we can regard the possible
values of normal curvature of curves passing through 𝑝 ∈ 𝑆 as the values of the second fundamental form
restricted to the unit circle𝑆1 ⊂ 𝑇𝑝𝑆. Since the second fundamental form is the quadratic form associated
to a self-adjoint linear map, a theorem from linear algebra tells us that there exists an orthonormal basis
{𝑣1, 𝑣2} for 𝑇𝑝𝑆 such that 𝑑𝑁𝑝(𝑣1) = −𝑘1𝑣1 and 𝑑𝑁𝑝(𝑣2) = −𝑘2𝑣2, where, assuming that 𝑘1 ≥ 𝑘2, the
values 𝑘1 and 𝑘2 are the maximum and minimum of the normal curvature at 𝑝, respectively. Thus, we
may choose orthogonal unit vectors in 𝑣1, 𝑣2 ∈ 𝑇𝑝𝑆 such that 𝑣1 and 𝑣2 are eigenvectors of the second
fundamental form, and their eigenvalues are the maximum and minimum of the normal curvature at 𝑝.
Definition 2.2.11. The eigenvalues 𝑘1 and 𝑘2 described above are called the principal curvatures at 𝑝,
and the corresponding directions associated to the eigenvectors are the principal directions at 𝑝.

This leads us to point out a distinguished set of curves on a regular, orientable surface.
Definition 2.2.12. A regular curve 𝛼 ∶ 𝐼 → 𝑆 on a regular, orientable surface 𝑆 whose tangent vector
𝑡(𝑠) is along a principal direction for all 𝑠 ∈ 𝐼 is called a line of curvature of 𝑆.

Note that this definition does not depend on the choice of parametrization for the curve; the defi-
nition only insists certain behavior of the trace of the curve. We mention that the coordinate curves of a
parametrization x ∶ 𝑈 ⊂ ℝ2 → 𝑆 are lines of curvature if and only if 𝐹 ≡ 𝑓 ≡ 0. In this case, we call x
a lines of curvature parametrization. We also have the following characterization of lines of curvature
in terms of the Gauss map:
Proposition 2.2.5. A regular curve 𝛼 ∶ 𝐼 → 𝑆 is a line of curvature of 𝑆 if and only if

𝑁 ′(𝑡) = 𝜆(𝑡)𝛼′(𝑡),

where 𝜆 ∶ 𝐼 → ℝ is a differentiable function, and 𝑁(𝑡) is the spherical image of 𝛼(𝑡).

This follows from the fact that the tangent vector field of the curve is everywhere an eigenvector of
the second fundamental form. We are now ready to introduce the two notions of curvature for regular,
orientable surfaces.
Definition 2.2.13. For 𝑆 a regular, oriented surface, the Gaussian curvature 𝐾 of 𝑆 at 𝑝 ∈ 𝑆 is given
by

𝐾(𝑝) = det (𝑑𝑁𝑝),

and the mean curvature 𝐻 of 𝑆 at 𝑝 is given by

𝐻(𝑝) = −1
2

Tr (𝑑𝑁𝑝).

These quantities do not depend on the choice of basis for 𝑇𝑝𝑆, so choosing the orthonormal basis
{𝑣1, 𝑣2} which diagonalizes the matrix 𝑑𝑁𝑝, we see that the Gaussian and mean curvature are given in
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terms of the principal curvatures as
𝐾 = 𝑘1𝑘2 𝐻 =

𝑘1 + 𝑘2
2

.

The sign of the Gaussian curvature is independent of the orientation chosen, and has important ramifi-
cations for the behavior of a surface, so we establish some vocabulary:
Definition 2.2.14. A point 𝑝 of the regular, oriented surface 𝑆 is called planar if 𝑑𝑁𝑝 = 0, parabolic if
𝐾(𝑝) = 0 and 𝑑𝑁𝑝 ≠ 0, hyperbolic if 𝐾(𝑝) < 0, and elliptic if 𝐾(𝑝) > 0.

For example, the points of a sphere are elliptic, the points of a plane are planar, the points of a
cylinder are parabolic, and we will see plenty of hyperbolic points in our discussion of pseudospherical
surfaces, although points near the center of a pringle are a nice example.

We collect one more term here which will be important in our study of pseudospherical surfaces.
Definition 2.2.15. For 𝑆 a regular, orientable surface, an asymptotic direction at 𝑝 ∈ 𝑆 is a direction
in 𝑇𝑝𝑆 for which the normal curvature is zero, and an asymptotic curve is one whose tangent vector
field is everywhere along an asymptotic direction.

Note that at elliptic points of a surface, the principal curvatures do not differ sign, so that there are
no asymptotic directions. We will see later that at hyperbolic points, there are two distinct asymptotic
directions which bisect the principal directions. Given some parametrization x ∶ 𝑈 ⊂ ℝ2 → 𝑆, and
a curve 𝛼 ∶ 𝐼 → 𝑆 ∩ x(𝑈 ) with coordinate expression 𝛼(𝑡) = (𝑢(𝑡), 𝑣(𝑡), the condition that 𝛼 be an
asymptotic curve is that 𝐼𝐼𝑝(𝛼′) ≡ 0. In coordinates this reads

𝑒(𝑢′)2 + 2𝑓𝑢′𝑣′ + 𝑔(𝑣′)2 = 0.

This tells us that the coordinate curves of a parametrization such that all points in x(𝑈 ) are hyperbolic are
asymptotic curves if and only if 𝑒 ≡ 𝑔 ≡ 0. If this is the case, we call x a parametrization in asymptotic
coordinates, or simply an asymptotic parametrization. The local existence of such parametrizations at
hyperbolic points of a surface is guaranteed:
Proposition 2.2.6. For 𝑆 a regular, orientable surface, and 𝑝 ∈ 𝑆 a hyperbolic point, there exists an
asymptotic parametrization about a neighborhood of 𝑝.

In order to actually compute the curvature of a surface, one needs to work in coordinates. Supposing
that x ∶ 𝑈 ⊂ ℝ2 → 𝑆 is a parametrization for the regular, oriented surface 𝑆, a somewhat lengthy
computation yields

𝐾 =
𝑒𝑔 − 𝑓 2

𝐸𝐺 − 𝐹 2
𝐻 = 1

2
𝑒𝐺 − 2𝑓𝐹 + 𝑔𝐸

𝐸𝐺 − 𝐹 2
,

so we obtain expressions in terms of the first and second fundamental forms obtained for our coordinate
system.

To conclude this section, we define the more refined notion of equivalence of regular surfaces which
takes into account their geometry:
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Definition 2.2.16. A diffeomorphism 𝜙 ∶ 𝑆1 → 𝑆2 is an isometry if

⟨𝑢, 𝑣⟩𝑝 = ⟨𝑑𝜙𝑝(𝑢), 𝑑𝜙𝑝(𝑣)⟩𝜙(𝑝)

for all 𝑝 ∈ 𝑆1 and all 𝑢, 𝑣 ∈ 𝑇𝑝𝑆1.

Surfaces admitting an isometry are said to be isometric, and the notion of local isometry is defined
in the obvious way. The following proposition captures the fact that the first fundamental form is invariant
under local isometry.
Proposition 2.2.7. If parametrizations x1 ∶ 𝑈 ⊂ ℝ2 → 𝑆1 and x2 ∶ 𝑈 ⊂ ℝ2 → 𝑆2 are such that
𝐸1 ≡ 𝐸2, 𝐹1 ≡ 𝐹2, and 𝐺1 ≡ 𝐺2 on 𝑈, then x2 ◦ x−11 ∶ x(𝑈 ) → 𝑆2 is a local isometry.

2.2.4 The Fundamental Equations

For 𝑆 a regular orientable surface, choose some orientation 𝑁 ∶ 𝑆 → 𝑆2, and let x ∶ 𝑈 ⊂ ℝ2 → 𝑆 be
a parametrization which is compatible with the orientation, meaning that

x𝑢 ∧ x𝑣
|x𝑢 ∧ x𝑣|

(x−1(𝑝)) = 𝑁(𝑝)

for all 𝑝 ∈ x(𝑈 ). Then the set of vector fields {x𝑢, x𝑣, 𝑁} frames our surface, just as the Frenet trihedron
frames a curve. We can then express the derivatives of such vector fields in this frame, with

x𝑢𝑢 = Γ111x𝑢 + Γ211x𝑣 + 𝛼1𝑁

x𝑢𝑣 = Γ112x𝑢 + Γ212x𝑣 + 𝛼2𝑁

x𝑣𝑢 = Γ121x𝑢 + Γ221x𝑣 + 𝛼′2𝑁

x𝑣𝑣 = Γ122x𝑢 + Γ222x𝑣 + 𝛼3𝑁

𝑁𝑢 = 𝑎11x𝑢 + 𝑎21x𝑣
𝑁𝑣 = 𝑎12x𝑢 + 𝑎22x𝑣

which we shall call the Christoffel system. The Γ𝑘𝑖𝑗 are the Christoffel symbols of 𝑆 in the parametriza-
tion x. For the reader familiar with Riemannian geometry, these are in fact the usual Christoffel symbols
of the Levi-Civita connection on 𝑆, where we view 𝑆 as a 2-manifold which is isometrically embedded
in ℝ3. We immediately see that Γ𝑘12 = Γ𝑘21 from the identity x𝑢𝑣 = x𝑣𝑢, and similarly we have 𝛼2 = 𝛼′2.
By taking inner products with 𝑁, we see that 𝛼1 = 𝑒, 𝛼2 = 𝑓, and 𝛼3 = 𝑔, and taking inner products of
the expressions for 𝑁𝑢 and 𝑁𝑣 with x𝑢 and x𝑣, we end up with the equation

−

(

𝑒 𝑓
𝑓 𝑔

)

=

(

𝑎11 𝑎21
𝑎12 𝑎22

)(

𝐸 𝐹
𝐹 𝐺

)

19



from which we can expressions for the 𝑎𝑖𝑗 coefficients in terms of the fundamental forms, although we
will not have occasion to use these. As for the Christoffel symbols, a long computation gives

Γ111 =
1
2
𝐸𝑢𝐺 − 𝐸𝑣𝐺 − 2𝐹𝐹𝑢

𝐸𝐺 − 𝐹 2

Γ211 =
1
2
−𝐸𝑢𝐹 − 𝐸𝑣𝐸 + 2𝐸𝐹𝑢

𝐸𝐺 − 𝐹 2

Γ112 = Γ121 =
1
2
𝐸𝑣𝐺 − 𝐺𝑢𝐹
𝐸𝐺 − 𝐹 2

Γ212 = Γ221 =
1
2
𝐺𝑢𝐸 − 𝐸𝑣𝐹
𝐸𝐺 − 𝐹 2

Γ122 =
1
2
2𝐹𝑣𝐺 − 𝐺𝑢𝐺 − 𝐺𝑣𝐹

𝐸𝐺 − 𝐹 2

Γ222 =
1
2
𝐺𝑣𝐸 + 𝐺𝑢𝐹 − 2𝐹𝐹𝑣

𝐸𝐺 − 𝐹 2

(1)

Since the Christoffel symbols are expressible in terms of the first fundamental form coefficients only,
they are intrinsic quantities in the sense that, once we define an inner product on each tangent space of
our surface, we can compute the Christoffel symbols without any reference to the ambient Euclidean
space in which our surface sits. Commutativity of the operators 𝜕∕𝜕𝑢 and 𝜕∕𝜕𝑣 gives us the identities:

(x𝑢𝑢)𝑣 − (x𝑢𝑣)𝑢 = 0

(x𝑣𝑣)𝑢 − (x𝑣𝑢)𝑣 = 0

𝑁𝑢𝑣 −𝑁𝑣𝑢 = 0,

which can be written in the frame {x𝑢, x𝑣, 𝑁}, and by linear independence the nine coefficients must all
vanish. We will not include the computations, but manipulation of these expressions can lead to

(Γ212)𝑢 − (Γ211)𝑣 + Γ112Γ
2
11 + (Γ212)

2 − Γ211Γ
2
22 = Γ111Γ

2
12 = −𝐸𝐾,

which is known as the Gauss equation. This shows that the Gaussian curvature of our surface is an in-
trinsic property, which is quite striking considering that our definition of the Gaussian curvature seemed
to rely heavily on the ambient space through use of the second fundamental form. In particular, if we
gave some regular, orientable surface a first fundamental form induced by the Euclidean metric in ℝ3, we
could then completely forget that 𝑆 sits in ℝ3, and we would still be able to compute the Gaussian curva-
ture of the surface. This is the content of the following theorem of Gauss, which the great mathematician
was enough impressed with to call the remarkable theorem:
Theorem 2.2.1. (Theorema Egregium) The Gaussian curvature of a surface is invariant under local
isometries.

Similar manipulations which gave the Gauss equation also yield the relations
𝑒𝑣 − 𝑓𝑢 = 𝑒Γ112 + 𝑓 (Γ

2
12 − Γ111) − 𝑔Γ

2
11
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𝑓𝑣 − 𝑔𝑢 = 𝑒Γ122 + 𝑓 (Γ
2
22 − Γ112) − 𝑔Γ

2
12,

which are called the Mainardi-Codazzi equations. Although the journey is much more complicated,
we have done something reminiscent to finding the Frenet-Serret formulas for curves: we have expressed
the derivatives of the vector fields which frame our surface in terms of the vector fields themselves, as
well as the fundamental form coefficients. It is far from clear whether or not the equations we have
obtained are enough to characterize the surface, but the following result of Bonnet tells us that, at least
locally, they are.
Theorem 2.2.2. (Bonnet) Let 𝐸, 𝐹 ,𝐺, 𝑒, 𝑓 , 𝑔 ∶ 𝑈 ⊂ ℝ2 → ℝ be differentiable functions such that
𝐸,𝐺 > 0,which satisfy the Gauss and Mainardi-Codazzi equations and the relation𝐸𝐹 −𝐺2 > 0. Then,
for each 𝑝 ∈ 𝑈, there exists a neighborhood 𝑉 ⊂ 𝑈 of 𝑝 and a differentiable embedding x ∶ 𝑉 → ℝ3

such that the regular surface x(𝑉 ) has fundamental form coefficients the given functions. Moreover, if 𝑉
is connected, for any other embedding y ∶ 𝑉 → ℝ3 satisfying the same conditions, the regular surfaces
x(𝑉 ) and y(𝑉 ) differ only by rigid motion.

This theorem justifies the terminology that the Gauss and Mainardi-Codazzi equations are the com-
patibility conditions, or fundamental equations, for a surface.

3 Pseudospherical Surfaces

3.1 Prelude

Although differential equations show up in many contexts in surface theory, there is no reason to suspect
a priori that surface theory can be a useful tool for solving differential equations. However, it is largely
the goal of this thesis to explain that this is the case. To begin telling this story, we turn our attention to
a special class of surfaces:
Definition 3.1.1. A regular, orientable surface 𝑆 is called pseudospherical if 𝐾(𝑝) = −1 for all 𝑝 ∈ 𝑆.

We will see that, for a suitable choice of coordinate system, the compability conditions for a pseu-
dospherical surface boil down to one of the two equations

𝜙𝑢𝑢 − 𝜙𝑣𝑣 = sin𝜙 cos𝜙

𝜙𝑥𝑡 = sin𝜙,

which connection was first set down in 1862 by Edmond Bour [2]. We have already seen the second
equation, but they are indeed two different forms of sG, up to a change of coordinates and rescaling
by a constant. Since we will be exploring sG in some detail, we note here that sG is known to fairly
accurately describe various systems in nonlinear physics: it appears in the Frenkel-Kontorova model for
crystal dislocations, and serves as a useful approximation in the study of long Josephson junctions, to
name just a couple of applications.
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3.2 Coordinate Systems

We have seen that surfaces admit local parametrizations in asymptotic coordinates at hyperbolic points.
In the case of pseudospherical surfaces, we can actually cover our surface by parametrizations in asymp-
totic coordinates since every point is hyperbolic. In particular, for any 𝑝 a point of the pseudospherical
surface 𝑆, there exists a parametrization x(𝑥, 𝑡) ∶ 𝑈 ⊂ ℝ2 → 𝑆 such that 𝑝 ∈ x(𝑈 ), and the coordinate
curves are asymptotic. In such a parametrization, the second fundamental form reads

𝐼𝐼(𝑥, 𝑡) = 𝜆(𝑥, 𝑡)𝑑𝑥𝑑𝑡,

where 𝜆 ∶ 𝑈 → ℝ is a positive, differentiable function. The parametrization x is given by differentiable
coordinate functions, with

x(𝑥, 𝑡) = (𝑓 (𝑥, 𝑡), 𝑔(𝑥, 𝑡), ℎ(𝑥, 𝑡)).

Under the change or coordinates
𝑥 = 𝑢 + 𝑣

𝑡 = 𝑢 − 𝑣,

we obtain the parametrization x ∶ 𝑉 → 𝑆 expressed in the variables 𝑢 and 𝑣 defined by the coordinate
functions

x(𝑢, 𝑣) = (𝑓 (𝑢, 𝑣), 𝑔(𝑢, 𝑣), ℎ(𝑢, 𝑣)),

having the same image in 𝑆 as before. After this change of variables, the second fundamental form
appears as

𝐼𝐼(𝑢, 𝑣) = 𝜆(𝑢, 𝑣)
(

𝑑𝑢2 − 𝑑𝑣2
)

A parametrization in such coordinates (namely, where 𝑒 = −𝑔 and 𝑓 = 0) will be called isothermal-
conjugate. The constant curvature condition on 𝑆 immediately yields the relation

𝜆 = −
√

𝐸𝐺 − 𝐹 2,

where the choice of sign is inconsequential. The Mainardi-Codazzi equations now take the simple form

𝜆𝑢 = 𝜆(Γ122 + Γ212)

𝜆𝑣 = 𝜆(Γ112 + Γ211).

The functions 𝜆𝑢 and 𝜆𝑣 can be expressed in terms of the first fundamental form coefficients by differ-
entiation of the identity 𝜆 = −

√

𝐸𝐺 − 𝐹 2, with

𝜆𝑢 =
𝐸𝐺𝑢 + 𝐺𝐸𝑢 − 2𝐹𝐹𝑢

2𝜆

𝜆𝑣 =
𝐸𝐺𝑣 + 𝐺𝐸𝑣 − 2𝐹𝐹𝑣

2𝜆
.
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As for the right-hand side of the Mainardi-Codazzi equations, we can use the expressions of the Christof-
fel symbols in terms of the first fundamental form coefficients and their derivatives given in section 2.2.4,
with

𝜆(Γ122 + Γ212) =
2𝐺𝐹𝑣 − 𝐺𝐺𝑢 − 𝐹𝐺𝑣 + 𝐸𝐺𝑢 − 𝐹𝐸𝑣

2𝜆

𝜆(Γ112 + Γ211) =
𝐺𝐸𝑣 − 𝐹𝐺𝑢 − 𝐸𝑢𝐹 − 𝐸𝐸𝑣 + 2𝐸𝐹𝑢

2𝜆
.

Putting these identities together, some simplifications give the tidy relations
𝐺(𝐸𝑢 + 𝐺𝑢 − 2𝐹𝑣) = −𝐹 (𝐸𝑣 + 𝐺𝑣 − 2𝐹𝑢)

𝐸(𝐸𝑣 + 𝐺𝑣 − 2𝐹𝑢) = −𝐹 (𝐸𝑢 + 𝐺𝑢 − 2𝐹𝑣).

Letting 𝑥 = 𝐸𝑢 + 𝐺𝑢 − 2𝐹𝑣 and 𝑦 = 𝐸𝑣 + 𝐺𝑣 − 2𝐹𝑢, the relations are
𝐺𝑥 = −𝐹𝑦

𝐸𝑦 = −𝐹𝑥.

By multiplying these equations and moving terms to one side, we see that
(𝐸𝐺 − 𝐹 2)𝑥𝑦 = 0.

The quantity 𝐸𝐺−𝐹 2 certainly is nonzero in the domain of our parametrization, so the product 𝑥𝑦must
vanish everywhere. Now, assume without loss of generality that, for some 𝑞 ∈ 𝑉 , we have 𝑥(𝑞) = 0.
The Mainardi-Codazzi equations read:

𝐹 (𝑞)𝑦(𝑞) = 0

𝐸(𝑞)𝑦(𝑞) = 0.

Since both 𝐸 and 𝐹 cannot simultaneously vanish, we have 𝑦(𝑞) = 0. Thus, the quantities 𝑥 and 𝑦 are
zero everywhere; that is,

𝐸𝑢 + 𝐺𝑢 − 2𝐹𝑣 = 0

𝐸𝑣 + 𝐺𝑣 − 2𝐹𝑢 = 0.

Observe that the functions
𝐸 = cos2 𝜙 𝐹 = 0 𝐺 = sin2 𝜙

solve such a system, where 𝜙 ∶ 𝑉 → ℝ is a differentiable function of 𝑢 and 𝑣 never equal to an integer
multiple of 𝜋∕2. The second fundamental form coefficients in this parametrization are readily obtained:

𝑒 = − sin𝜙 cos𝜙 𝑓 = 0 𝑔 = sin𝜙 cos𝜙.

The isothermal-conjugate coordinate system will lend itself to computational ease when considering
transformations of pseudospherical surfaces, but it will also bring us directly to the correspondence
which such surfaces have with sG.
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3.3 Sine-Gordon as a Compatibility Condition

We have produced a candidate for the first and second fundamental forms of isothermal-conjugate neigh-
borhoods for an arbitrary pseudopsherical in terms of some function𝜙.However, we have not tested these
functions against the Gauss equation. To this end, we compute the Christoffel symbols, which are given
by

Γ111 = −𝜙𝑢 tan𝜙 Γ112 = −𝜙𝑣 tan𝜙 Γ122 = −𝜙𝑢 tan𝜙

Γ211 = 𝜙𝑣 cot 𝜙 Γ212 = 𝜙𝑢 cot 𝜙 Γ222 = 𝜙𝑣 cot 𝜙,

and the Gauss equation simplifies to
𝜙𝑢𝑢 − 𝜙𝑣𝑣 = sin𝜙 cos𝜙,

which is the sG expressed in so-called laboratory coordinate. We will denote this equation as l-sG
for brevity. Passing back into asymptotic coordinates, also called light-cone coordinates, requires the
coordinate change

𝑥 = 𝑢 + 𝑣

𝑡 = 𝑢 − 𝑣.

The Gauss equation is then
𝜙𝑥𝑡 = sin𝜙 cos𝜙,

multiplying through by 2 and using a trigonometric identity yields the original form of sG noted in this
thesis, reading

(2𝜙)𝑥𝑡 = sin 2𝜙,

which we will refer to as c-sG. Note the apparent conflict of notation: we call 𝑢 and 𝑣 laboratory coordi-
nates, and 𝑥 and 𝑡 light-cone coordinates, whereas 𝑥 and 𝑡 are a more reasonable choice for coordinates
describing space and time in a laboratory. This is because we will mostly work in laboratory coordi-
nates in geometric constructions, so that we wish to keep the convention of a parametrization having
parameters 𝑢 and 𝑣. After all, these names come from the reminiscence with transformations in special
relativity, and we do not wish to consider this analogy in any serious manner.

Not very surprising is the fact that the function 𝜙 explicitly describes the geometry of the pseu-
dospherical surface under investigation. To elucidate this significance, we see that, in the asymptotic
coordinates 𝑥 and 𝑡, the first fundamental form reads

𝐼(𝑥, 𝑡) = 𝑑𝑥2 + 2 cos(2𝜙)𝑑𝑥𝑑𝑡 + 𝑑𝑡2.

Since 𝐸 ≡ 𝐺 ≡ 1, the asymptotic coordinate curves are parametrized by arc length, so that 2𝜙 rep-
resents the angle between asymptotic curves at each point in the coordinate neighborhood. In general,
a parametrization for which 𝐸 ≡ 𝐺 ≡ 1 is called a Chebyshev∗ net, so we have rather found that a

∗The surname of the Russian mathematician Pafnuty Chebyshev is spelled in a wide variety of ways in the Roman alphabet.
We have chosen the spelling adopted by the American Mathematical Society.
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pseudospherical surface can be covered by what we shall call asymptotic Chebyshev nets, the meaning
of such terminology being clear.

Thus, any pseudospherical surface can locally be described by l-sG solutions which avoid integer
multiples of 𝜋∕2 (or c-sG solutions which avoid integer multiples of 𝜋). This restriction of the range of 𝜙
is clear when considering that the quantity𝐸𝐺−𝐹 2 is everywhere positive, or when taking into account
the fact that the angle between distinct asymptotic directions may never be 𝜋, since this implies that
the directions coincide. Likewise, one can construct a pseudospherical surface from any l-sG solution
avoiding integer multiples of 𝜋∕2 (or c-sG solution avoiding integer multiples of 𝜋) according to Bonnet’s
theorem of section 2.2.4. Note that this local representation is not unique, however. Suppose that we
have a function 𝜙 satisfying

𝜙𝑥𝑡 = sin𝜙

which locally represents the surface 𝑆, so avoids integer multiples of 𝜋 and describes the angle between
asymptotic curves in an asymptotic Chebyshev neighborhood. Then 𝜙 + 2𝑛𝜋 for 𝑛 ∈ ℤ+ is also a
c-sG solution and decribes the same surface, as well as the function 𝜋 − 𝜙. Addition of 2𝜋 is clearly
allowed since the sine function is periodic, and the solution 𝜋 − 𝜙 reflects the fact that one can reverse
the direction of travel for one of the coordinate curves of an asymptotic Chebyshev net, so that the angle
between asymptotic curves is brought from 𝜙 in the original asymptotic Chebyshev net to 𝜋 − 𝜙 in the
modified one.

3.4 A Linear Representation

To place the obtained correspondence in a more condensed form, we can express the Christoffel system
of Section 2.2.4 as a system of 2 × 2 linear equations which has sG as a compatibility condition. This
will also bring us to a linear system which is amenable to the inverse scattering transformation. Note
that this section will make modest use of Lie theory.

Assume that we have an asymptotic Chebyshev net x ∶ 𝑈 ⊂ ℝ2 → 𝑆, of the pseudospherical
surface 𝑆, so that the fundamental forms may be expressed as

𝐼 = 𝑑𝑥2 + 2 cos𝜙 𝑑𝑥𝑑𝑡 + 𝑑𝑡2

𝐼𝐼 = 2 sin𝜙 𝑑𝑥𝑑𝑡,

where 𝜙 ∶ 𝑈 → (0, 𝜋) is a local c-sG solution. The Christoffel symbols of this parametrization are then

Γ111 = 𝜙𝑥 cot 𝜙 Γ112 = 0 Γ122 = −𝜙𝑡 csc𝜙

Γ211 = −𝜙𝑥 csc𝜙 Γ212 = 0 Γ222 = 𝜙𝑡 cot 𝜙.

Defining the orthonormal triad
{i, j,k} = {x𝑥,−x𝑥 ∧ N,N},
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where N is the unit normal vector field on 𝑆 compatible with the parametrization, we can express the
Christoffel system in this frame. To give an example of how the computation is done, see that

i𝑥 = x𝑥𝑥 = 𝜙𝑥
(

cot 𝜙x𝑥 − csc𝜙x𝑡
)

.

Since N = (x𝑥 ∧ x𝑡)∕ sin𝜙, it follows that j = −x𝑥 ∧𝑁 = −cot 𝜙x𝑥 + csc𝜙x𝑡, from which we simply
have that i𝑥 = −𝜙𝑥j. Carrying on similarly for all first derivatives, we obtain six equations which we can
express in matrix form as

⎛

⎜

⎜

⎜

⎝

i
j
k

⎞

⎟

⎟

⎟

⎠𝑥

=

⎛

⎜

⎜

⎜

⎝

0 −𝜙𝑥 0
𝜙𝑥 0 1
0 −1 0

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

i
j
k

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

i
j
k

⎞

⎟

⎟

⎟

⎠𝑡

=

⎛

⎜

⎜

⎜

⎝

0 0 sin𝜙
0 0 − cos𝜙

− sin𝜙 cos𝜙 0

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

i
j
k

⎞

⎟

⎟

⎟

⎠

,

where we consider the matrix with one column to be the 3 × 3 matrix whose rows are the coordinate
functions for i, j, and k. What is nice about this representation is that the Mainardi-Codazzi equations
are baked into these equations: if 𝜙 satisfies c-sG and avoids integer multiples of 𝜋, then this system is
solvable for the functions i, j, and k, and from these one can construct the given coordinate chart x by
the fundamental theorem of surfaces of Bonnet. To give the matrices above names, let us say that the
above equations are

𝑇𝑥 = 𝐴𝑇

𝑇𝑡 = 𝐵𝑇 .

By direct computation, we see that

𝐴𝑡 − 𝐵𝑥 + [𝐴,𝐵] =

⎛

⎜

⎜

⎜

⎝

0 −𝜙𝑥𝑡 + sin𝜙 0
𝜙𝑥𝑡 − sin𝜙 0 0

0 0 0

⎞

⎟

⎟

⎟

⎠

.

Thus, the compatibility condition, in this case the Gauss equation expressed for our parametrization, is
simply

𝐴𝑡 − 𝐵𝑥 + [𝐴,𝐵] = 0,

which states that 𝜙 satisfies c-sG (note that the 0 above represents the 3 × 3 matrix whose entries are all
zero). Since 𝐴 and 𝐵 are skew-symmetric, they belong to the Lie algebra 𝔰𝔬(3), which has the basis

𝑀1 =

⎛

⎜

⎜

⎜

⎝

0 0 0
0 0 −1
0 1 0

⎞

⎟

⎟

⎟

⎠

𝑀2 =

⎛

⎜

⎜

⎜

⎝

0 0 1
0 0 0
−1 0 0

⎞

⎟

⎟

⎟

⎠

𝑀3 =

⎛

⎜

⎜

⎜

⎝

0 −1 0
1 0 0
0 0 0

⎞

⎟

⎟

⎟

⎠

.
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In particular, 𝐴 = −𝑀1+𝜙𝑥𝑀3 and 𝐵 = cos𝜙𝑀1+sin𝜙𝑀2.Moreover, the bracket operation of 𝔰𝔬(3)
is the standard commutator, which gives the relations

[𝑀1,𝑀2] =𝑀3 [𝑀2,𝑀3] =𝑀1 [𝑀3,𝑀1] =𝑀2

To obtain a 2×2 linear representation from our 3×3 system, we use the isomorphism between 𝔰𝔬(3) and
𝔰𝔲(2), the Lie algebra consisting of complex-valued traceless 2× 2 matrices which are skew-Hermitian.
The Lie algebra 𝔰𝔲(2) has basis

𝜎1 =

(

0 1
1 0

)

𝜎2 =

(

0 −𝑖
𝑖 0

)

𝜎3 =

(

1 0
0 −1

)

,

known as the Pauli matrices. Again, the bracket operation is given by the standard commutator, yielding
the relations

[𝜎1, 𝜎2] = 2𝑖𝜎3 [𝜎2, 𝜎3] = 2𝑖𝜎1 [𝜎2, 𝜎1] = 2𝑖𝜎2 .

The isomorphism is clear from here; we just send 𝑀𝑗 to 𝜎𝑗∕2𝑖. Applying this isomorphism to 𝐴 and 𝐵
gives a 2 × 2 linear system

𝑆𝑥 = 𝐴̃𝑆

𝑆𝑡 = 𝐵̃𝑆,

where 𝐴̃ and 𝐵̃ are the images of 𝐴 and 𝐵 in 𝔰𝔲(2), given by

𝐴̃ = 𝑖
2

(

−𝜙𝑥 1
1 𝜙𝑥

)

𝐵̃ = − 𝑖
2

(

0 𝑒−𝑖𝜙

𝑒𝑖𝜙 0

)

,

and 𝑆 the image of 𝑇 , recalling that 𝑇 was the matrix whose rows were the entries of i, j, and k. Now,
introducing the gauge transformation

𝐺 =

(

1 1
𝑖 −𝑖

)

,

we will define Φ = 𝐺𝑆. We then have that Φ𝑥 = 𝐺𝑆𝑥 and Φ𝑡 = 𝐺𝑆𝑡, from which we see that our linear
system transforms to

Φ𝑥 = 𝐺𝐴̃𝐺−1Φ

Φ𝑡 = 𝐺𝐵̃𝐺−1Φ,

which, upon performing the multiplication, gives

Φ𝑥 =
1
2

(

𝑖 −𝜙𝑥
𝜙𝑥 −𝑖

)

Φ

Φ𝑡 =
1
2𝑖

(

cos𝜙 sin𝜙
sin𝜙 −cos𝜙

)

Φ.
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Lastly, we notice that, if we effect the transformation 𝜙′ = −𝜙, 𝑢 = 𝑥∕𝜆, 𝑣 = 𝜆𝑡 for 𝜆 ≠ 0, then
𝜙′
𝑢𝑣 = sin𝜙′. The invariance of sG under the transformation of the 𝑥 and 𝑡 variables was first observed

by Sophus Lie. Those familiar with modern physics will notice that this reflects the relativistic invariance
of sG, which, together with its nature as a soliton equation, makes it an attractive candidate for a (1+1)-
dimensional field theory. If we apply such a transformation to the equations above, we first see that

1
𝜆
Φ𝑢 =

1
2

(

𝑖 𝜙′
𝑢∕𝜆

−𝜙′
𝑢∕𝜆 −𝑖

)

Φ

𝜆Φ𝑣 =
𝑖
2

(

−cos𝜙′ sin𝜙′

sin𝜙′ cos𝜙′

)

Φ.

By simplifying this expression, we obtain the so-called AKNS representation for the sine-Gordon equa-
tion, namely

Φ𝑢 =
1
2

(

𝑖𝜆 𝜙′
𝑢

−𝜙′
𝑢 −𝑖𝜆

)

Φ

Φ𝑣 =
𝑖
2𝜆

(

−cos𝜙′ sin𝜙′

sin𝜙′ cos𝜙′

)

Φ.

Note that this differs from the standard AKNS system for sG by a gauge transformation. We will mention
in Section 5.2 that the first equation is the linear problem for which one can perform the inverse scattering
transform and solve the initial value problems for sG. If we denote

𝐿 = 1
2

(

𝑖𝜆 𝜙′
𝑢

−𝜙′
𝑢 −𝑖𝜆

)

𝐵 = 𝑖
2𝜆

(

−cos𝜙′ sin𝜙′

sin𝜙′ cos𝜙′

)

,

then the equation
𝐿𝑣 − 𝐵𝑢 + [𝐿,𝐵] = 0

still recovers c-sG.

3.5 Pseudospherical Surfaces of Revolution

We now consider a family of pseudospherical surfaces with especially simple geometry, namely rota-
tional symmetry. We will see that these surfaces are not difficult to classify, and that they are in direct
correspondence with l-sG solutions which depend non-trivially on only one variable. We begin by con-
sidering any surface of revolution, which admits a parametrization x ∶ (0, 2𝜋) × (𝑎, 𝑏) → ℝ3 with
coordinate functions given by

x(𝑢, 𝑣) = (𝑓 (𝑣) cos 𝑢, 𝑓 (𝑣) sin 𝑢, 𝑔(𝑣)),

obtained by rotating a plane curve, which we will call the generating curve, in the 𝑥𝑧−plane about
the 𝑧-axis, which is the axis of symmetry for the surface, in that rotation about this axis by any angle
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is an isometry. Note that, to obtain a family of charts which covers the surface, we can also include a
parametrization with the same coordinate functions, but with domain (−𝜋, 𝜋) × (𝑎, 𝑏), which will yield
the same fundamental forms as the original chart x. The first fundamental form is then

𝐼 = 𝑓 2𝑑𝑢2 + (𝑓 2
𝑣 + 𝑔2𝑣)𝑑𝑣

2

and we can make the assumption that the generating curve is parametrized by arc length, which gives
𝐺 ≡ 1. The second fundamental form is

𝐼𝐼 = −𝑓𝑔𝑣𝑑𝑢2 + (𝑓𝑣𝑣𝑔𝑣 − 𝑓𝑣𝑔𝑣𝑣)𝑑𝑣2,

and so the Gaussian curvature of the surface is
𝐾 = −

𝑔𝑣(𝑓𝑣𝑣𝑔𝑣 − 𝑓𝑣𝑔𝑣𝑣)
𝑓

.

By the assumption that the generating curve is parametrized by arc length, we obtain 𝑓𝑣𝑓𝑣𝑣 = −𝑔𝑣𝑔𝑣𝑣,
which can be used to simplify our expression:

𝐾 = −
𝑔2𝑣𝑓𝑣𝑣 − 𝑔𝑣𝑔𝑣𝑣𝑓𝑣

𝑓
= −

𝑔2𝑣𝑓𝑣𝑣 + 𝑓
2
𝑣𝑓𝑣𝑣

𝑓
= −

𝑓𝑣𝑣
𝑓
.

Now, specializing to 𝐾 ≡ −1, we see that 𝑓 = 𝑓𝑣𝑣, which has general solution
𝑓 (𝑣) = 𝛼𝑒𝑣 + 𝛽𝑒−𝑣.

We have assumed in our computations that the generating curve never intersects the 𝑧-axis, so we can
discard the trivial solution in which 𝛼 = 𝛽 = 0. In the case when 𝛼 = 𝛽 ≠ 0, we obtain

𝑓 (𝑣) = 𝛾 cosh 𝑣,

where 𝛾 = 2𝛼. From the relation 𝑓 2
𝑣 + 𝑔2𝑣 = 1, we see that 𝑔𝑣 =

√

1 − 𝛾2 sinh2 𝑣, where the choice
of sign does not alter the geometry of the resulting surface. Note that, by doing some simple algebra,
we can obtain the domain for this function. Letting 𝑎 =

|

|

|

|

ln
(

√

1 + 1∕𝛾2 + 1∕|𝛾|
)

|

|

|

|

, it works out to be
[−𝑎, 𝑎] Thus, we have that the coordinate functions completely describing the surface are

𝑓 (𝑣) = 𝛾 cosh 𝑣 𝑔(𝑣) = ∫

𝑣

0

√

1 − 𝛾2 sinh2 𝑡𝑑𝑡,

where we can take the domain of the parameter 𝑣 to be (−𝑎, 𝑎). We will call this a cosh-type surface.
Integration is not so simple here; if we make the substitution 𝑣 ↦ 𝑖𝑡, and envoke the identity sinh(𝑖𝑡) =
𝑖 sin 𝑡, we obtain the integral

𝑔(𝑣) = −𝑖∫

𝑣

0

√

1 + 𝛾2 sin2 𝑡𝑑𝑡,

which is an incomplete elliptic integral of the second kind. These integrals have been studied extensively
and are quite interesting in their own right, but here is not the place to discuss their solutions, so we
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may leave the coordinate functions as above and continue with our classification. In the case when
𝛼 = −𝛽 ≠ 0, we obtain

𝑓 (𝑣) = 𝛾 sinh 𝑣,

where 𝛾 = 2𝛼. We can again make an arbitrary choice of sign and set 𝑔𝑣 =
√

1 − 𝛾2 cosh2 𝑣. More
algebra gives that, letting 𝑏 =

|

|

|

|

ln
(

√

1∕𝛾2 − 1 + 1∕|𝛾|
)

|

|

|

|

, the domain for this function is the interval
(0, 𝑏], and there is the additional restriction that |𝛾| < 1. We are restricting to the positive section of the
domain because the curve crosses the 𝑧-axis, and we want to consider connected curves which do not
cross this axis. Thus, we have coordinate functions

𝑓 (𝑣) = 𝛾 sinh 𝑣 𝑔(𝑣) = ∫

𝑣

0

√

1 − 𝛾2 cosh2 𝑡𝑑𝑡,

with 𝑣 ∈ (0, 𝑏) and |𝛾| ∈ (0, 1). This shall be called a sinh-type surface. This, again, involves an elliptic
integral, so we shall leave the coordinate functions as written. We also have the simple case in which
𝛽 = 0, which gives

𝑓 (𝑣) = 𝛼𝑒𝑣 𝑔(𝑣) = ∫

𝑣

0

√

1 − 𝛼2𝑒2𝑡𝑑𝑡,

where 𝑣 ∈ (−∞ , ln(1∕|𝛼|)); to be called an e-type surface. The integral above can be computed
explicitly, and we will do so in the next section. Note that the case in which 𝛼 = 0 and 𝛽 ≠ 0 produces
the same surface, since the coordinate functions differ by the reparametrization 𝑣 ↦ −𝑣.

Now, consider the case in which 𝛼 ≠ 𝛽 ≠ 0, and 𝛼 and 𝛽 share the same sign. In this case, we
can set 𝛾 = ±2

√

𝛼𝛽 and 𝑐 = 1
2 ln(𝛽∕𝛼), where the sign of gamma is determined by the sign of 𝛼 and 𝛽.

Some algebra yields
𝑓 (𝑣) = 𝛾 𝑒

𝑣−𝑐 + 𝑒𝑐−𝑣
2

= 𝛾 cosh(𝑣 − 𝑐).

This produces a reparametrization of a cosh-type surface, so that it is also of cosh-type. Similarly, we
have the case in which the 𝑒𝑣 and 𝑒−𝑣 coefficients are not equal and differ in sign, which we can write as

𝑓 (𝑣) = 𝛼𝑒𝑣 − 𝛽𝑒−𝑣,

where 𝛼 and 𝛽 share the same sign. In this case, we may set 𝛾 = ±2
√

−𝛼𝛽 and 𝑐 = 1
2 ln(−𝛽∕𝛼), where

the sign of 𝛾 is chosen to agree with the sign of 𝛼. This gives

𝑓 (𝑣) = 𝛾 sinh(𝑣 − 𝑐),

a reparametrization of a sinh-type surface, so that this surface is also of sinh-type.
To collect our results, we see that any pseudospherical surface of rotation can be described by

generating curves of three types, namely:

𝑓 (𝑣) = 𝛾 cosh 𝑣 𝑔(𝑣) = ∫

𝑣

0

√

1 − 𝛾2 sinh2 𝑡𝑑𝑡
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𝑓 (𝑣) = 𝛾 sinh 𝑣 𝑔(𝑣) = ∫

𝑣

0

√

1 − 𝛾2 cosh2 𝑡𝑑𝑡

𝑓 (𝑣) = 𝑒𝑣 𝑔(𝑣) = ∫

𝑣

0

√

1 − 𝑒2𝑡𝑑𝑡,

where the relevant domains of the parameter 𝑣 and possible restrictions for the value of 𝛾 have been
described above. Notice that we have removed the parameter 𝛾 from the 𝑒-type surfaces: in the next
section, we will see that there is only one 𝑒-type surface up to rigid motion in ℝ3. The reader familiar
with the notion of completeness for Riemannian manifolds will notice that none of these surfaces are
complete; the domain of the parameter 𝑣 for the generating curve had some restrictions in all cases, so
one could find a Cauchy sequence in 𝑆 with no limit in 𝑆, etc. In fact, none of these surfaces have a
pseudospherical completion; i.e., if one could extend any of these surfaces to be complete, the resulting
surface could not be pseudospherical. This is a manifestation of Hilbert’s Theorem, to be discussed later
on in this thesis.

3.5.1 Associated Sine-Gordon Solutions

Now that we have characterized the pseudospherical surfaces of rotation, it is natural to ask what their
corresponding sG solutions are. In order to compute these functions, we must pass either to an asymptotic
Chebyshev net, or isothermal-conjugate coordinates, so our parametrizations obtained thus far must be
modified.

Let us start with the 𝑒-type surface, which is given by a parametrization x ∶ (0, 2𝜋)×(−∞, 0) → ℝ3

with coordinate functions

x(𝑢, 𝑣) =
(

𝛾𝑒𝑣 cos 𝑢, 𝛾𝑒𝑣 sin 𝑢,∫

𝑣

0

√

1 − 𝛾2𝑒2𝑡𝑑𝑡
)

.

To obtain an isothermal-conjugate parametrization, consider the change of coordinates given by

𝑤 = ln

(

1 +
√

1 − 𝛾2𝑒2𝑣

𝛾𝑒𝑣

)

.

We see that
𝑒𝑤 =

1 +
√

1 − 𝛾2𝑒2𝑣

𝛾𝑒𝑣
𝑒−𝑤 =

𝛾𝑒𝑣

1 +
√

1 − 𝛾2𝑒2𝑣
,

and so performing some algebra gives

𝑒𝑤 + 𝑒−𝑤 = 2
𝛾𝑒𝑣

,

which implies that 𝛾𝑒𝑣 = sech𝑤. The coordinate function involving an integral is easily calculated:

∫

𝑣

0

√

1 − 𝛾2𝑒2𝑡𝑑𝑡 = 1
2
ln
|

|

|

|

|

|

√

1 − 𝛾2𝑒2𝑣 − 1
√

1 − 𝛾2𝑒2𝑣 + 1

|

|

|

|

|

|

+
√

1 − 𝛾2𝑒2𝑣.

31



Using an identity from hyperbolic trigonometry then yields tanh𝑤 =
√

1 − 𝛾2𝑒2𝑣. Moreover, a series of
computations gives

1
2
ln
|

|

|

|

|

|

√

1 − 𝛾2𝑒2𝑣 + 1
√

1 − 𝛾2𝑒2𝑣 − 1

|

|

|

|

|

|

− ln
|

|

|

|

|

|

1 +
√

1 − 𝛾2𝑒2𝑣

𝛾𝑒𝑣

|

|

|

|

|

|

= 1
2

[

ln
|

|

|

|

|

|

√

1 − 𝛾2𝑒2𝑣 + 1
√

1 − 𝛾2𝑒2𝑣 − 1

|

|

|

|

|

|

+ ln
|

|

|

|

|

|

𝛾𝑒𝑣
√

1 − 𝛾2𝑒2𝑣 + 1

|

|

|

|

|

|

− ln
|

|

|

|

|

|

√

1 − 𝛾2𝑒2𝑣 + 1
𝛾𝑒𝑣

|

|

|

|

|

|

]

= 1
2

[

ln
|

|

|

|

|

|

𝛾𝑒𝑣
√

1 − 𝛾2𝑒2𝑣 − 1

|

|

|

|

|

|

− ln
|

|

|

|

|

|

√

1 + 𝛾2𝑒2𝑣 + 1
𝛾𝑒𝑣

|

|

|

|

|

|

]

= 1
2
ln
|

|

|

|

|

𝛾2𝑒2𝑣

𝛾2𝑒2𝑣
|

|

|

|

|

= 0.

This gives us another expression for the variable 𝑤, namely

𝑤 = 1
2
ln
|

|

|

|

|

|

√

1 − 𝛾2𝑒2𝑣 + 1
√

1 − 𝛾2𝑒2𝑣 − 1

|

|

|

|

|

|

,

and so we can express the integral in terms of 𝑤 as

∫

𝑣

0

√

1 − 𝛾2𝑒2𝑡𝑑𝑡 = tanh𝑤 −𝑤.

Relabeling our coordinates back to 𝑢 and 𝑣 for convenience, and reflecting the curve about the 𝑧-axis,
we arrive at the parametrization x(𝑢, 𝑣) ∶ (0, 2𝜋) ×ℝ+ → 𝑆 defined by the coordinate functions

x(𝑢, 𝑣) = (sech𝑣 cos 𝑢, sech𝑣 sin 𝑢, 𝑣 − tanh𝑣).
Note that, by this transformation, we have rid ourselves of the constant 𝛾; so the 𝑒-type surface is unique
up to rigid motion, and is known as the pseudosphere. The tangents to the coordinate curves are given
by

x𝑢 = (−sech𝑣 sin 𝑢, sech𝑣 cos 𝑢, 0)
x𝑣 = (−sech𝑣tanh𝑣 cos 𝑢,−sech𝑣tanh𝑣 sin 𝑢, tanh2𝑣),

so the first fundamental form is
𝐼 = sech2𝑣 𝑑𝑢2 + tanh2𝑣 𝑑𝑣2

We can also directlty compute the unit normal vector field to the surface:
N = (tanh𝑣 cos 𝑢, tanh𝑣 sin 𝑢, sech𝑣),

and from here the second fundamental form is found to be
𝐼𝐼 = −sech𝑣 tanh𝑣(𝑑𝑢2 − 𝑑𝑣2).

Thus, we have moved into isothermal-conjugate parameters. The standard transformation to asymptotic
coordinates then gives the first fundamental form in an asymptotic Chebyshev net:

𝐼 = 𝑑𝑥2 + 2(1 − 2sech2(𝑥 − 𝑡))𝑑𝑥𝑑𝑡 + 𝑑𝑡2.
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So, the c-sG solution corresponding to the pseudosphere is
𝜙(𝑥, 𝑡) = arccos(1 − 2sech2(𝑥 − 𝑡)),

and the analogous l-sG solution is
𝜓(𝑢, 𝑣) = 1

2
arccos(1 − 2sech2𝑣).

To investigate our other surfaces, we will look for a change of parameters which produces an asymp-
totic Chebyshev net. This will require some more work; let us first return to the general situation, where
we have a chart x(𝑢, 𝑣) ∶ (0, 2𝜋) × 𝑈 ⊂ ℝ2 → 𝑆 of a pseudospherical surface of revolution 𝑆 with
coordinate functions

x(𝑢, 𝑣) = (𝑓 (𝑣) cos 𝑢, 𝑓 (𝑣) sin 𝑢, 𝑔(𝑣)).

Assuming that the generating curve is parametrized by arc length, the fundamental forms are given by
𝐼 = 𝑓 2𝑑𝑢2 + 𝑑𝑣2

𝐼𝐼 = −𝑓𝑔𝑣𝑑𝑢2 + (𝑓𝑣𝑣𝑔𝑣 − 𝑓𝑣𝑔𝑣𝑣)𝑑𝑣2.

Direct computation gives that the Gauss and mean curvature of 𝑆 yield

𝐾 =
𝑒𝑔
𝐸𝐺

𝐻 =
𝑒𝐺 + 𝑔𝐸
2𝐸𝐺

.

Recall also that the values of principal curvature, 𝑘1 and 𝑘2 at some point on the surface satisfy

𝐾 = 𝑘1𝑘2 𝐻 =
𝑘1 + 𝑘2

2
.

These equations imply that the principal curvatures on the surface are given by the differentiable func-
tions 𝑘1 = 𝑒∕𝐸 and 𝑘2 = 𝑔∕𝐺. In terms of the functions 𝑓 and 𝑔, we have

𝑘1 = −
𝑔𝑣
𝑓

𝑘2 = 𝑓𝑣𝑣𝑔𝑣 − 𝑓𝑣𝑔𝑣𝑣.

For any 𝑝 ∈ 𝑆, the principal directions of 𝑆 at 𝑝 are along the orthogonal vectors x𝑢 and x𝑣, so any unit
vector 𝑣 ∈ 𝑇𝑝𝑆 has a unique decomposition

𝑣 = cos 𝜃
x𝑢
√

𝐸
+ sin 𝜃

x𝑣
√

𝐺
,

where 𝜃 is the oriented angle from x𝑢 to 𝑣. For notational convenience, we will write the normalized
vector fields x𝑢 and x𝑣 as x̂𝑢 and x̂𝑣 Using the fact that x̂𝑢 and x̂𝑣 are eigenvectors of the differential
of the Gauss map at 𝑝 with eigenvalues 𝑘1 and 𝑘2, respectively, we can directly compute the normal
curvature along 𝑣, with

𝑘𝑛(𝑣) = −⟨𝑑𝑁𝑝(𝑣), 𝑣⟩

= −⟨𝑑𝑁𝑝(cos 𝜃x̂𝑢 + sin 𝜃x̂𝑣), cos 𝜃x̂𝑢 + sin 𝜃x̂𝑣⟩
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= −cos2 𝜃⟨𝑑𝑁𝑝(x̂𝑢), x̂𝑢⟩ − sin2 𝜃⟨𝑑𝑁𝑝(x̂𝑣), x̂𝑣⟩ − 2 sin 𝜃 cos 𝜃⟨𝑑𝑁𝑝(x̂𝑢), x̂𝑣⟩,

where we have also used self-adjointness in the last line. Notice that the last term vanishes; 𝑑𝑁𝑝(x̂𝑢) is
along x̂𝑢, which is orthogonal to x̂𝑣. Thus, we end up with the expression

𝑘𝑛(𝑣) = 𝑘1 cos2 𝜃 + 𝑘2 sin
2 𝜃,

which is known as Euler’s Formula, despite there being many formulas which take exactly this name.
To find the asymptotic directions at 𝑝, we set the normal curvature to zero, which gives

tan2 𝜃 = −
𝑘1
𝑘2
.

We note that the form of this equation makes plain that the principal directions bisect the asymptotic
directions at all hyperbolic points of a surface. Plugging in the values of principal curvature for our
pseudospherical surface of revolution, we see that

tan2 𝜃 =
𝑔𝑣

𝑓 (𝑓𝑣𝑣𝑔𝑣 − 𝑓𝑣𝑔𝑣𝑣)
.

By our condition on the Gauss curvature, we know that

−1 = 𝐾 = −
𝑔𝑣(𝑓𝑣𝑣𝑔𝑣 − 𝑓𝑣𝑔𝑣𝑣)

𝑓
,

which allows us to simplify our expression, with

tan2 𝜃 =
𝑔2𝑣
𝑓 2
.

Let us now look at the sinh-type surfaces, which can be parametrized by a chart x(𝑢, 𝑣) ∶ (0, 2𝜋)×(0, 𝑏) →
ℝ3 having coordinate functions

x(𝑢, 𝑣) =
(

𝛾 sinh 𝑣 cos 𝑢, 𝛾 sinh 𝑣 sin 𝑢,∫

𝑣

0

√

1 − 𝛾2 cosh2 𝑡 𝑑𝑡
)

,

where 𝑏 has been defined earlier, and |𝛾| < 1. Our equation yielding the asymptotic directions on this
surfaces is then

tan2 𝜃 =
1 − 𝛾2 cosh2 𝑣
𝛾2 sinh2 𝑣

.

Starting with the positive root, we see that

tan 𝜃 =

√

1 − 𝛾2 cosh2 𝑣

𝛾 sinh 𝑣
,

from which we obtain
cos 𝜃 =

𝛾 sinh 𝑣
√

1 − 𝛾2
sin 𝜃 =

√

1 − 𝛾2 cosh2 𝑣
1 − 𝛾2

.
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Labeling the asymptotic unit vector field associated to the function 𝜃(𝑢, 𝑣) as 𝑋(𝑢, 𝑣), we have

𝑋(𝑢, 𝑣) = 1
√

1 − 𝛾2

(

x𝑢 + x𝑣
√

1 − 𝛾2 cosh2 𝑣
)

.

Choosing the negative root of the equation, we have that

tan𝜙 = −

√

1 − 𝛾2 cosh2 𝑣

𝛾 sinh 𝑣
,

from which we obtain
cos𝜙 =

𝛾 sinh 𝑣
√

1 − 𝛾2
sin𝜙 = −

√

1 − 𝛾2 cosh2 𝑣
1 − 𝛾2

.

Labeling the asymptotic unit vector field associated to the angle function 𝜙(𝑢, 𝑣) as 𝑌 (𝑢, 𝑣), we have

𝑌 (𝑢, 𝑣) = 1
√

1 − 𝛾2

(

x𝑢 − x𝑣
√

1 − 𝛾2 cosh2 𝑣
)

.

Now, we wish to find parameters 𝜉 and 𝜂 such that, when the chart x is expressed in these parameters, we
have x𝜉 = 𝑋 and x𝜂 = 𝑌 ; achieving this would mean that x(𝜉, 𝜂) is an asymptotic Chebyshev net. So,
suppose that we have x(𝑢(𝜉, 𝜂), 𝑣(𝜉, 𝜂)),where 𝜉 and 𝜂 are our desired asymptotic Chebyshev parameters.
Then, we have the equations

𝑋 = x𝜉 = x𝑢
𝜕𝑢
𝜕𝜉

+ x𝑣
𝜕𝑣
𝜕𝜉
.

𝑌 = x𝜂 = x𝑢
𝜕𝑢
𝜕𝜂

+ x𝑣
𝜕𝑣
𝜕𝜂
.

Comparing coefficients, we see that

𝜕𝑢
𝜕𝜉

= 1
√

1 − 𝛾2
𝜕𝑣
𝜕𝜉

=

√

1 − 𝛾2 cosh2 𝑣
1 − 𝛾2

𝜕𝑢
𝜕𝜂

= 1
√

1 − 𝛾2
𝜕𝑣
𝜕𝜂

= −

√

1 − 𝛾2 cosh2 𝑣
1 − 𝛾2

.

From these equations, we conclude that

𝑢 =
𝜉 + 𝜂

√

1 − 𝛾2
+ 𝑐

and 𝑣(𝜉, 𝜂) = 𝑣(𝜉 − 𝜂). The trouble now is expressing the quantity ⟨x𝜉 , x𝜂⟩ in terms of the parameters 𝜉
and 𝜂. Well, we have

⟨x𝜉 , x𝜂⟩ =
1

1 − 𝛾2

⟨

x𝑢 + x𝑣
√

1 − 𝛾2 cosh2 𝑣, x𝑢 − x𝑣
√

1 − 𝛾2 cosh2 𝑣
⟩

=
𝛾2 sinh2 𝑣 − 1 + 𝛾2 cosh2 𝑣

1 − 𝛾2
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=
𝛾2 cosh(2𝑣) − 1

1 − 𝛾2
.

In principle, this can be expressed in terms of 𝜉 and 𝜂, but we see from the equations above that such
an expression necessarily contains an elliptic integral inside the argument of the cosh function, since
the expression describing the parameter 𝑣 in terms of 𝜉 and 𝜂 involves an elliptic integral. Thus, the
c-sG solution corresponding to the sinh-type surface, obtained by applying arccos to the function above
expressed in parameters 𝜉 and 𝜂, is not expressible in terms of elementary functions.

The story is the same for the cosh-type surfaces; the associated sG solution will involve an elliptic
integral term.

Let us return to our sG solution associated to the 𝑒-type surface, or pseudosphere. We found that
the c-sG solution was

𝜙(𝑥, 𝑡) = arccos(1 − 2sech2(𝑥 − 𝑡)),
where the domain is restricted so that the function is everywhere differentiable, in particular, we require
that 𝑥−𝑡 > 0. The form of this solution should be somewhat striking: it is a wave! Indeed, for fixed 𝑡, the
curve tends quickly to 0 for large 𝑥, and changing the parameter 𝑡 causes this curve to move at uniform
velocity. Although not defined on ℝ, this function can be extended to a global, smooth solution to c-sG,
which also exhibits wave character, although the function approaches 2𝜋 as 𝑥→ −∞ rather than 0. This
extension is a single soliton solution to sG, and we will find later that there are 𝑛 soliton solutions for
any 𝑛 ∈ ℕ, which consist of 𝑛 waveforms called ’kinks’ which go mostly unharmed upon interaction
with each other, just as in the case of soliton solutions to the KdV equation discussed in chapter 1. In
the next chapter, we will produce machinery which, in principle, allows one to find all soliton solutions
to sG through mostly algebraic means. A corollary to this machinery is that all soliton solutions to sG
are expressible in terms of elementary functions, so that the cosh- and sinh-type surfaces are not soliton
surfaces. This may be surprising considering their simple geometry, but the fact that the domain of the
generating curves for these surfaces are bounded in ℝ makes clear that they should not correspond to sG
solutions with smooth extensions to ℝ, and the solitons of sG must, by definition, be globally defined.
Although we did not produce the sG solutions for the sinh- and cosh-type surfaces, we can say something
about their character with the following result, which does not seem to appear anywhere in the literature.
Proposition 3.5.1. A pseudospherical surface 𝑆 is contained in a pseudospherical surface of revolution
if and only if there is an l-sG solution representing𝑆 which depends non-trivially on exactly one variable.

Proof. Suppose we have a pseudospherical surface of revolution 𝑆. A theorem of Eisenhart tells us that
surfaces of revolution all admit isothermal-conjugate parametrizations [5], and these are also parametriza-
tions in lines of curvature. We have already seen that the coefficients of the fundamental forms of an
isothermal-conjugate parametrization for a pseudospherical surface yield an associated l-sG solution for
𝑆 by appropriate manipulations. Thus, we have that any l-sG solution associated to 𝑆 can be expressed
as a function of the coefficients of the fundamental forms of 𝑆 expressed in isothermal-conjugate pa-
rameters. Supposing that we an isothermal-conjugate parametrization x(𝑢, 𝑣) ∶ 𝑈 ⊂ ℝ2 → 𝑆, we can
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assume without loss of generality that 𝑣 parametrizes the generating curve, and 𝑢 is the parameter cor-
responding to rotation about the axis of symmetry, since these are exactly the principal directions of 𝑆.
Since rotations about the axis of symmetry are isometries, we have that the fundamental form coeffi-
cients at x(𝑢, 𝑣) are equal to those at x(𝑢 + 𝑠, 𝑣), where 𝑠 > 0 is such that (𝑢 + 𝑠, 𝑣) ∈ 𝑈. Thus, the
fundamental form coefficients in this parametrization do not depend on 𝑢, so that any associated l-sG
solution so obtained is a function of 𝑣 only. The same argument works if 𝑆 is a proper subset of some
pseudospherical surface of revolution.

To prove the converse, suppose that the pseudospherical surface 𝑆 can be constructed by the l-
sG solution 𝜙(𝑢, 𝑣) which depends non-trivially on the variable 𝑣 only. Then, the surface 𝑆 has an
isothermal-conjugate parametrization in which the fundamental forms read

𝐼 = cos2 𝜙𝑑𝑢2 + sin2 𝜙𝑑𝑣2

𝐼𝐼 = sin𝜙 cos𝜙(−𝑑𝑢2 + 𝑑𝑣2),

and the Christoffel symbols are now given by

Γ111 = 0 Γ112 = −𝜙𝑣 tan𝜙 Γ122 = 0

Γ211 = 𝜙𝑣 cot 𝜙 Γ212 = 0 Γ222 = 𝜙𝑣 cot 𝜙,

since all partials with respect to 𝑢 give 0 by assumption. First, we will examine the curves 𝛼(𝑣) = x(𝑢0, 𝑣),
which are lines of curvature for each 𝑢0 in the parametrization’s domain. With our knowledge of the
surface 𝑆, the Frenet frame is easily obtained. The unit tangent vector to the curve is simply 𝑡 = x𝑣∕

√

𝐺,
so that

𝑡𝑣 =
x𝑣𝑣
√

𝐺
−

𝐺𝑣
2𝐺3∕2

x𝑣

= 1
sin𝜙

(Γ122x𝑢 + Γ222x𝑣 + 𝑔𝑁) −
2𝜙𝑣 sin𝜙 cos𝜙

2 sin3 𝜙
x𝑣 = (cos𝜙)𝑁.

By definition, the curvature of the curve 𝛼 is given by 𝜅 = cos𝜙, and the unit normal 𝑛 to the curve is
𝑁, the normal to the surface. The binormal for the curve 𝑏 is then

𝑏 = 𝑡 ∧ 𝑛 =
x𝑣
√

𝐺
∧𝑁 =

x𝑢
√

𝐸
.

The torsion of the curve 𝛼 is given by the equation 𝑏𝑣 = 𝜏𝑛, computing gives

𝑏𝑣 =
x𝑢𝑣
√

𝐸
−

𝐸𝑣
2𝐸3∕2

= 1
cos𝜙

(Γ112x𝑢 + Γ212x𝑣) +
𝜙𝑣 sin𝜙 cos𝜙

cos3 𝜙
x𝑢 = 0.

So the curve 𝛼 satisfies 𝜏 ≡ 0, which is to say that 𝛼 is a plane curve. Notice that the curvature and
torsion of 𝛼 did not depend on 𝑢0, so that all 𝑢 = 𝑐𝑜𝑛𝑠𝑡. curves on 𝑆 have the same curvature and torsion.
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Thus, all such curves are identical, differing only by rigid motion in ℝ3.As for the curve 𝛽(𝑢) = x(𝑢, 𝑣0),
the unit tangent vector to the curve is x𝑢∕

√

𝐸, so that

𝑡𝑢 =
x𝑢𝑢
√

𝐸
−

𝐸𝑢
2𝐸3∕2

x𝑢.

Since the fundamental forms are functions only of 𝑣, the second term is 0, and we have that

𝑡𝑢 =
1

cos𝜙
(Γ111x𝑢 + Γ211x𝑣 + 𝑒𝑁) = 𝜙𝑣

x𝑣
√

𝐺
− (sin𝜙)𝑁.

Thus, the curvature of 𝛽 is 𝜅 =
√

𝜙2
𝑣 + sin2 𝜙, which is constant since it only depends on 𝑣. To compute

the torsion of 𝛽, we first see that its binormal is given by

𝑏 =
x𝑢
√

𝐸
∧

(

𝜙𝑣
√

𝜙2
𝑣 + sin2 𝜙

x𝑣
√

𝐺
−

sin𝜙
√

𝜙2
𝑣 + sin2 𝜙

𝑁

)

=
x𝑣 + 𝜙𝑣𝑁

√

𝜙2
𝑣 + sin2 𝜙

.

Taking a derivative yields

𝑏𝑢 =
1

√

𝜙2
𝑣 + sin2 𝜙

(x𝑢𝑣 + 𝜙𝑣𝑁𝑢) =
1

√

𝜙2
𝑣 + sin2 𝜙

(

Γ112x𝑢 + Γ212x𝑣 + 𝜙𝑣 sin𝜙
x𝑢
√

𝐸

)

.

Plugging in values gives 𝑏𝑢 = 0, which implies that 𝜏 ≡ 0. The 𝑣 = 𝑐𝑜𝑛𝑠𝑡. curves then have constant
curvature and no torsion, which implies that they are pieces of circles.

What we have is that 𝑆 can be generated by rotating a plane curve 𝛼 about some piece of a circle
𝛽, and we see that we may extend 𝛽 to be an entire circle, and we may translate and rotate the curve
𝛼 about this circle in such a way that we extend the domain of the parameter 𝑢 without altering the
fundamental forms. With this modification, rotating 𝑆 about the line perpendicular to the plane spanned
by 𝛽 and intersecting its center corresponds to a transformation which only affects the 𝑢 parameter.
Since this does not affect the fundamental form coefficients and is a diffeomorphism, it is an isometry.
We have therefore found an axis of symmetry for the extension of 𝑆, so that 𝑆 must be contained in a
pseudospherical surface or revolution.

The result is not particularly deep since it only concerns surfaces of a very small collection which
we have classified, but it exemplifies the manner in which the geometry of a pseudospherical surface is
related to the form of its corresponding sG solutions.

3.6 Curves of Constant Torsion

We now see a slightly different approach to obtaining the sG by studying the binormal motion of curves
of constant torsion. A motivation for this approach is the following classical result from surface theory:
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Theorem. (Beltrami-Enneper) The torsion 𝜏 of an asymptotic curve on a surface whose curvature is
nowhere zero is given by

|𝜏| =
√

−𝐾.

Note that no complex numbers arise in equation above: a surface has asymptotic directions at some
point 𝑝 if and only if𝐾 ≤ 0. This means that the asymptotic curves on a pseudospherical surface all have
constant torsion. In light of this result, we could view a parametrization of a pseudospherical surface
in asymptotic coordinates as describing the motion of a curve of constant torsion, so that these surfaces
are really just the figure swept out by the motion of such a curve. The only restriction on the motion of
the curve is that it be along its binormal. To see that one always obtains a pseudospherical surface from
such a process, suppose that we have a curve of constant torsion undergoing binormal motion through
3-space. This can be described by a differentiable map x(𝑠, 𝑡) ∶ 𝑈 ⊂ ℝ2 → ℝ3, where the restriction
x(𝑠, 𝑡0) describes a curve of constant torsion, and the parameter 𝑡 describes the rigid motion of this curve.
At each fixed 𝑡0, the Frenet frame of the curve is given by

t𝑠 = 𝜅n

n𝑠 = 𝜏b − 𝜅t

b𝑠 = −𝜏n,

and we wish for this frame to remain orthonormal as 𝑡 varies. Differentiating the identities

⟨t,n⟩ = 0

⟨n,b⟩ = 0

⟨t,b⟩ = 0

with respect to the parameter 𝑡 gives us that

⟨t𝑡,n⟩ = −⟨t,n𝑡⟩ = 0

⟨t𝑡,b⟩ = −⟨t,b𝑡⟩ = 𝛼,

⟨n𝑡,b⟩ = −⟨n,b𝑡⟩ = 𝛽,

where 𝛼, 𝛽 ∶ 𝑈 → ℝ are differentiable. Note that the inner product ⟨t𝑡,n⟩ is zero because at any given
point on the curve, the vector t𝑡 represents the direction in which the curve is travelling, which is along the
binormal of the curve, so is perpendicular to the normal vector n. Thus, we can describe the 𝑡 derivatives
of our orthonormal frame as

t𝑡 = 𝛼b

n𝑡 = 𝛽b

b𝑡 = −𝛼t − 𝛽n.
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Since we require that derivatives with respect to each variable commute, we obtain expressions for t𝑠𝑡 =
t𝑡𝑠, n𝑠𝑡 = n𝑡𝑠, and b𝑠𝑡 = b𝑡𝑠 from which we can deduce the relations

𝛼𝑠 = 𝜅𝛽

𝛽𝑠 = −𝜅𝛼

𝜅𝑡 = −𝛼𝜏.

In particular, the value 𝛼2 + 𝛽2 is independent of 𝑠, since we have

(𝛼2 + 𝛽2)𝑠 = 2𝛼(𝜅𝛽) + 2𝛽(−𝜅𝛼) = 0.

Thus, we can define 𝛼2 + 𝛽2 = 𝛾2(𝑡), which is truly a function of 𝑡 only, and thus

𝛼 = 𝛾 sin𝜙 𝛽 = 𝛾 cos𝜙,

where 𝜙 is a differentiable function of both 𝑠 and 𝑡. Then the relation 𝛼𝑠 = 𝜅𝛽 becomes 𝜙𝑠 = 𝜅, and thus

𝜅𝑡 = 𝜙𝑠𝑡 = −𝜏𝛾 sin𝜙.

We have assumed that the torsion is constant, and in particular we can set 𝜏 ≡ ±1. In addition, we can
simply assume that the curve is traveling at constant unit speed, so that 𝛾 ≡ ±1, and changing the sign
of 𝛾 just changes the direction of motion of the curve. In the case that 𝜏 = 1 for example, we choose
𝛾 = −1, and obtain

𝜙𝑠𝑡 = sin𝜙.

To see how this translates to the situation on surfaces, we put our relations into matrix form, with
⎛

⎜

⎜

⎜

⎝

t
n
b

⎞

⎟

⎟

⎟

⎠𝑠

=

⎛

⎜

⎜

⎜

⎝

0 𝜙𝑠 0
−𝜙𝑠 0 1
0 −1 0

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

t
n
b

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

t
n
b

⎞

⎟

⎟

⎟

⎠𝑡

=

⎛

⎜

⎜

⎜

⎝

0 0 − sin𝜙
0 0 − cos𝜙

sin𝜙 cos𝜙 0

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

t
n
b

⎞

⎟

⎟

⎟

⎠

.

As before, this system is solvable for smooth functions {t,n,b} comprising the Frenet frame of a curve
of constant torsion satisfying binormal motion if and only if 𝜙 solves c-sG. We also see that, if we send
{t,n,b}(𝑠, 𝑡) → {i, j,k}(𝑥, 𝑡), and 𝜙(𝑠, 𝑡) → −𝜙(𝑥, 𝑡), we obtain the same 3 × 3 linear representation of
section 3.4 derived for an arbitrary pseudospherical surface. Thus, our linear system above is equivalent
to the Christoffel system for a pseudospherical surface, having the same compatibility condition.

3.7 Hilbert’s Theorem

This section contains ideas from differential and Riemannian geometry which have not been covered in
the introductory section on curves and surfaces, as well as more technical points of general topology.
For a discussion of the basic theory, see Chapter 5 of [4].
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Now that we have established the sG correspondence with pseudospherical surfaces, we should
wonder how results about one correspond to the other. In our case, we will use the geometry of pseu-
dospherical surfaces to understand the structure of sG associated to its status as a soliton equation, but
it feels equally natural to attempt to understand pseudospherical surfaces by translating geometric the-
orems to statements about the character of solutions to sG. Perhaps the richest testing ground for this
exploration is the following important theorem of Hilbert:
Theorem 3.7.1. A complete Riemannian 2-manifold with constant negative curvature cannot be isomet-
rically immersed in ℝ3.

Here, an immersion is a differentiable map between manifolds whose differential is everywhere
injective. We do not require that the map itself be injective; in particular, an isometric immersion of
a Riemannian 2-manifold 𝑆 → ℝ3 could have some self-intersections. Although there are multiple
notions of curvature in Riemannian geometry, they all coincide in dimension 2 to what is essentially
the Gaussian curvature (which we saw does not require any reference to the ambient space). The only
distinction to be made is that the Riemannian metric on an arbitrary 2-manifold need not be induced
by some differentiable immersion of the manifold into ℝ3 with the standard Euclidean metric. Indeed,
this statement displays a class of Riemannian 2-manifolds which lack this property, most notably the
Lobachevsky plane and other models of hyperbolic geometry in dimension 2.

To discuss Hilbert’s Theorem, some initial remarks are in order. First, we note that if 𝜙 ∶𝑀 → 𝑁
is an immersion of differentiable manifolds, and 𝑁 is equipped with a Riemannian metric, then we can
induce a metric on 𝑀 which makes 𝜙 an isometric immersion. To see this, take 𝑝 ∈ 𝑀 and 𝑈 ⊂ 𝑀
a neighborhood of 𝑝 such that 𝜙|𝑈 ∶ 𝑈 → 𝜙(𝑈 ) is a diffeomorphism. Since the differential of 𝜙 is
injective at 𝑝, we are justified in defining the metric at on 𝑀 at 𝑝 as

⟨𝑣,𝑤⟩𝑝 ∶= ⟨𝑑𝜙𝑝(𝑣), 𝑑𝜙𝑝(𝑤)⟩𝜙(𝑝)

where 𝑣,𝑤 ∈ 𝑇𝑝𝑀. It is routine to check that this actually defines a Riemannian metric on 𝑀, from
which it immediately follows that 𝜙 is an isometric immersion.

Now, we take 𝑀 a complete, Riemannian 2-manifold with constant negative curvature, which we
may assume to be −1, and assume the existence of an isometric immersion 𝜓 ∶ 𝑀 → ℝ3. For any
𝑝 ∈ 𝑀, the exponential map exp𝑝 ∶ 𝑇𝑝𝑀 → 𝑀 is a local diffeomorphism, in particular an immersion,
so we can induce a metric on 𝑇𝑝𝑀 such that this is an isometric immersion. We then have an isometric
immersion 𝜓 ◦ exp𝑝 ∶ 𝑇𝑝𝑀 → ℝ3 by composition. The problem is then reduced to showing that there
is no isometric immersion of ℝ2 → ℝ3 given that ℝ2 is equipped with a metric for which the curvature
is constantly equal to −1.

What does this say about the sG? Thus far, we have constructed, from the hypothesis that there
exists an isometric immersion of a complete Riemannian 2-manifold with constant curvature −1 into
ℝ3, an isometric immersion 𝜙 ∶ 𝑆 → ℝ3 of a Riemannian 2-manifold 𝑆 such that 𝑆 is diffeomorphic to
ℝ2 and has constant curvature −1. Since 𝑆 is not presented as a regular surface, we do not a priori have
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any notion of asymptotic directions on 𝑆. However, we can define some notion of asymptotic directions
on 𝑆 as follows: for each 𝑝 ∈ 𝑆, choose a neighborhood 𝑈 ⊂ 𝑆 of 𝑝 such that 𝜙|𝑈 ∶ 𝑈 → 𝜙(𝑈 ) is
a diffeomorphism. Then 𝜙(𝑈 ) is a pseudospherical surface, so that there are two distinct asymptotic
directions for 𝜙(𝑈 ) at 𝜙(𝑝). Since the differential of 𝜙 is an isomorphism here, we can take unit vectors
𝑢′, 𝑣′ ∈ 𝑇𝜙(𝑝)𝜙(𝑈 ) along the asymptotic directions, and pull them back to vectors 𝑢, 𝑣 ∈ 𝑇𝑝𝑆 via the
inverse of the differential of 𝜙 at 𝜙(𝑝). The directions defined by the span of the vectors 𝑢 and 𝑣 in 𝑇𝑝𝑆
then define what we will call the asymptotic directions of 𝑆 at 𝑝. We may define asymptotic curves and
the second fundamental form of 𝑆 similarly: the local extrinsic geometry of the isometrically immersed
’surface’ induces an extrinsic geometry on 𝑆.
Proposition 3.7.1. For each 𝑝 ∈ 𝑆, there exists an asymptotic Chebysev net x ∶ 𝑈 ⊂ ℝ2 → 𝑆 about 𝑝,
where asymptotic is used in the sense defined above.

Proof. Choose 𝑉 ⊂ 𝑆 a neighborhood of 𝑝 such that 𝜙|𝑉 ∶ 𝑉 → 𝜙(𝑉 ) is a diffeomorphism, so is an
isometry by construction. Since 𝜙(𝑝) is a point of the pseudospherical surface 𝜙(𝑉 ), we have already
seen that there exists an asymptotic Chebyshev net y(𝑢, 𝑣) ∶ 𝑈 ⊂ ℝ2 → 𝜙(𝑉 ) about 𝜙(𝑝). We then have
that 𝜙−1 ◦ y ∶ y−1(𝜙(𝑉 )) → 𝑆 is an asymptotic Chebyshev net of 𝑆 about 𝑝.

We now see that the isometric immersion induces local sG solutions on 𝑆. The remaining thrust is
to show that completeness of 𝑆 implies the existence of a single asymptotic Chebyshev net covering 𝑆.
Proposition 3.7.2. An arc-length parametrized asymptotic curve 𝛼 ∶ (−𝜖, 𝜖) → 𝑆 can be extended to
an arc-length parametrized asymptotic curve 𝛼̃ ∶ ℝ → 𝑆.

Proof. Suppose not, so that there is some maximal connected domain (𝑎, 𝑏) ⊂ ℝ such that 𝛼 ∶ (𝑎, 𝑏) → 𝑆
is defined. Note that the domain must be open; if it contained an endpoint 𝑎 or 𝑏, then we could extend
the domain according to the existence of local asymptotic Chebyshev nets demonstrated in the previous
proposition. We then have that 𝛼(𝑡) is defined for all 𝑎 < 𝑡 < 𝑏, but not for 𝑡 = 𝑏. Taking some sequence
{𝑡𝑛}𝑛∈ℤ+ of reals converging to 𝑏 such that 𝑎 < 𝑡𝑛 < 𝑏 for all 𝑛 ∈ ℤ+, we see that the sequence
{𝛼(𝑡𝑛)}𝑛∈ℤ+ is a Cauchy sequence in 𝑆 since our curve is parametrized by arc length. By completeness,
this sequence converges to some 𝑞 ∈ 𝑆. Thus, we may define 𝛼(𝑏) = 𝑞, contradicting the maximality of
the domain (𝑎, 𝑏).

Now, we define a map x ∶ ℝ2 → 𝑆 as follows: choosing a basepoint 𝑝0 ∈ 𝑆, there are two asymp-
totic directions at 𝑝0, from which we can define the traces of the asymptotic curves 𝛼 and 𝛽 intersecting
𝑝0, which are diffeomorphic to ℝ by the above proposition. We then choose two unit vectors 𝑒1 and 𝑒2
at 𝑝0 in some fixed orientation tangent to the traces of 𝛼 and 𝛽, respectively. For any (𝑢, 𝑣) ∈ ℝ, we
first travel along the curve 𝛼 a distance 𝑢 beginning at 𝑝0, the direction of travel being determined by the
vector 𝑒1, to reach the point 𝑞 ∈ 𝑆. There are two asymptotic directions of 𝑆 at 𝑞, one of which is along
𝛼, the other of which corresponds to the trace of some asymptotic curve 𝛾. Note the vectors 𝑒1 and 𝑒2 in
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the tangent space 𝑇𝑝0𝑆 extend to unique asymptotic vector fields along 𝛼 which are differentiable, the
extension of 𝑒1 being everywhere tangent to 𝛼. Thus, from the differentiable extension of 𝑒2 along 𝛼, we
obtain a vector 𝑒′2 ∈ 𝑇𝑞𝑆 which lies along the curve 𝛾. We then travel along 𝛾 a distance 𝑣 beginning at
𝑞, the direction of travel being determined by the vector 𝑒′2, to arrive at the point which we define to be
x(𝑢, 𝑣).

It is not difficult to see that, if we fix 𝑣0 ∈ ℝ, the map x(𝑢, 𝑣0) ∶ ℝ → 𝑆 is an asymptotic curve
parametrized by arc length, and the same holds for the restriction which fixes some 𝑢0 ∈ ℝ.

Proposition 3.7.3. The map x ∶ ℝ2 → 𝑆 is a surjective local diffeomorphism.

Proof. To show that x is a local diffeomorphism, just notice that, for every point 𝑞 ∈ 𝑆, there exists an
asymptotic Chebyshev net parametrizing a neighborhood 𝑈 of 𝑞. By construction, the restriction of x to
some 𝑉 ⊂ ℝ2 such that x(𝑉 ) ⊂ 𝑈 agrees with this parametrization on x(𝑉 ) up to some differentiable
homeomorphism of the domain, so the restriction x|𝑉 ∶ 𝑉 → 𝑆 is a diffeomorphism onto its image.

To prove surjectivity, we first note that x(ℝ2) is open in 𝑆. This is because we can choose a collec-
tion of open sets {𝑈𝛼}𝛼∈𝐽 covering ℝ2 such that x|𝑈𝛼 ∶ 𝑈𝛼 → 𝑆 is a diffeomorphism onto its image for
all 𝛼 ∈ 𝐽 . Thus, x(𝑈𝛼) is open in 𝑆 for all 𝛼 ∈ 𝐽 , and x(ℝ2) =

⋃

𝛼∈𝐽 x(𝑈𝛼), which is open in 𝑆.
Assume that x is not surjective. Then x(ℝ2) is an open, proper subset of 𝑆, so there is some

point 𝑞 lying on the boundary of x(ℝ2), which is necessarily not contained in x(ℝ2). Now, consider a
neighborhood 𝑈 of 𝑞 which is the image of an asymptotic Chebyshev net on 𝑆. Since 𝑞 is a limit point
of x(ℝ2), there is some 𝑝 ∈ x(ℝ2) ∩𝑈. Since 𝑝 and 𝑞 both lie in the image of an asymptotic Chebyshve
net, the point 𝑞 can be reached from 𝑝 by traveling a finite distance along at most two asymptotic curves
of 𝑆. However, since 𝑝 ∈ x(ℝ2), this implies that 𝑞 ∈ x(ℝ2): we can travel from 𝑝 to 𝑞 by moving a
finite distance along at most two asymptotic curves, so 𝑞 must lie in the image of x by construction of
the map. Thus, x must be surjective.

We have one final statement to prove to arrive at the sG version of Hilbert’s Theorem
Proposition 3.7.4. The map x is a diffeomorphism.

This will take some work, and we will begin with a statement from general topology.
Lemma 3.7.1. If 𝑓 ∶ 𝑋̃ → 𝑋 is a closed, surjective, local homeomorphism, then 𝑓 has the path lifting
property.

Throughout the proof, we will adopt the convention 𝐼 = [0, 1]. Recall that a closed map is one
which sends closed sets to closed sets, and a map 𝑓 ∶ 𝑋̃ → 𝑋 has the path lifting property if for every
continuous map 𝛼 ∶ 𝐼 → 𝑋, there is a lift, i.e. a map 𝛼̃ ∶ 𝐼 → 𝑋̃ such that 𝑓 ◦ 𝛼̃ = 𝛼.

Proof. Let 𝛼 ∶ 𝐼 → 𝑋 be a continuous map with 𝛼(0) = 𝑥0. Choosing 𝑥̃0 ∈ 𝑓−1(𝑥0), there is a
neighborhood 𝑈 of 𝑥̃0 such that 𝑓 |𝑈 ∶ 𝑈 → 𝑓 (𝑈 ) is a homeomorphism. Then we see that the preimage
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𝛼−1(𝑓 (𝑈 ) ∩ 𝛼(𝐼)) is open in 𝐼 and contains 0, so there is some 𝜖 ∈ (0, 1] such that 𝛼([0, 𝜖)) ⊂ 𝑓 (𝑈 ),
and we can apply the local inverse of 𝑓 here to obtain a partial lift 𝛼̃ ∶ [0, 𝜖) → 𝑋̃ such that 𝛼̃(0) = 𝑥̃0.

Now, assume that the domain of our lift 𝛼̃ beginning at 𝑥̃0 cannot be extended to all of 𝐼. We will
take up the case in which the maximal domain of 𝛼̃ is open in 𝐼 . We have that 𝛼̃ ∶ [0, 𝑟) → 𝑋̃ cannot
be defined at 𝑟, where 𝑟 ∈ (0, 1). Letting 𝑝 = 𝛼(𝑟), choose {𝑈𝛽}𝛽∈𝐽 an open cover of 𝑓−1(𝑝), such that
𝑓 |𝑈𝛽 ∶ 𝑈𝛽 → 𝑓 (𝑈𝛽) is a homeomorphism for all 𝛽 ∈ 𝐽 . I claim that the 𝑈𝛽’s can be chosen so that
they are pairwise disjoint. If this were not the case, then there would be some 𝑝̃ ∈ 𝑓−1(𝑝) such that, for
all neighborhoods 𝑉 of 𝑝̃, we have that 𝑉 ∩ (𝑓−1(𝑝) ⧵ {𝑝̃}) is non-empty, but this means that there is no
neighborhood 𝑉 of 𝑝̃ on which 𝑓 |𝑉 ∶ 𝑉 → 𝑋 is injective, contrary to assumption. Thus, we assume
that the collection {𝑈𝛽}𝛽∈𝐽 is pairwise disjoint, and we have that 𝑊 = ⊔𝛽𝑈𝛽 is open in 𝑋̃ and contains
𝑓−1(𝑝). If, for some 𝛿 < 𝑟, we had that 𝑓−1(𝛼(𝛿)) ⊂ 𝑊 , then we would have that one of our local lifts of
𝛼 to the sets {𝑈𝛽}𝛽∈𝐽 would intersect our original lift 𝛼̃ on some interval containing 𝛼̃(𝛿), and since this
lift contains a point of 𝑓−1(𝑝), we could extend the lift 𝛼̃ to a domain containing 𝑟. Assuming that this is
not the case, we then have that 𝑓 (𝑋̃ ⧵𝑉 ) is closed in 𝑋, since we assumed the map to be closed, and for
all 𝑠 < 𝛿, there is some point of 𝑓−1(𝛼(𝑠)) contained in 𝑋̃ ⧵ 𝑉 . From such points and by continuity of
𝑓 , we can construct a sequence in 𝑓 (𝑋̃ ⧵ 𝑉 ) which converges to 𝑝, so that 𝑝 ∈ 𝑓 (𝑋̃ ⧵ 𝑉 ) by closedness,
but this contradicts the fact that 𝑓−1(𝑝) ⊂ 𝑉 .

The case in which 𝛼̃ ∶ [0, 𝑟] → 𝑋 cannot be extended for some 𝑟 ∈ (0, 1) is easier to handle. In
any case, we obtain a contradiction, so that 𝑓 has the path lifting property.

We are now ready to prove that x is a diffeomorphism:

Proof. The map x ∶ ℝ2 → 𝑆 is clearly closed by construction, so has the path-lifting property by
the above lemma. It remains only to show that x is injective. Taking 𝑥, 𝑦 ∈ x−1(𝑝), there is a path
𝛼̃ ∶ 𝐼 → ℝ2 with 𝛼(0) = 𝑥 and 𝛼(1) = 𝑦, for example the path traversing the line segment between
𝑥 and 𝑦. We then obtain 𝛼 = x ◦ 𝛼̃ a loop based at 𝑝. Since 𝑆 is diffeomorphic to ℝ2, it is simply
connected, so 𝛼 is homotopic to the constant loop 𝑐𝑝 ∶ 𝐼 → 𝑆 at 𝑝. Given the path-lifting property,
it is straightforward to show that x also lifts path homotopies, so that the nullhomotopy of 𝛼 lifts to a
path-homotopy from 𝛼̃ to a constant map, and this is only possible if 𝑥 = 𝑦.

Thus, we have a diffeomorphism x ∶ ℝ2 → 𝑆 whose differential is everywhere injective since there
are two distinct asymptotic directions at every point of 𝑆. We have then parametrized our manifold with
one chart, in particular one asymptotic Chebyshev net. From this conclusion, we have the following:
Theorem 3.7.2. The non-existence of a global c-sG solution avoiding integer multiples of 𝜋 implies
Hilbert’s Theorem.

Proof. Assuming an isometric immersion 𝜓 ∶ 𝑀 → ℝ3 of a complete Riemannian 2-manifold with
constant curvature −1, we have found that, for any 𝑝 ∈ 𝑀, the manifold 𝑇𝑝𝑀 can be covered by one
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asymptotic Chebyshev net, where the metric and asymptotic directions are induced by the isometric
immersion as detailed above. Thus, the metric for 𝑇𝑝𝑀 is

𝐼 = 𝑑𝑥2 + 2 cos𝜙 𝑑𝑥𝑑𝑡 + 𝑑𝑡2,

where 𝜙 ∶ ℝ2 → ℝ is a c-sG solution avoiding integer multiples of 𝜋. Assuming that no such solution
exists, we obtain a contradiction, proving Hilbert’s Theorem.

Note that the hypothesis is equivalent to the non-existence of a global l-sG solution avoiding integer
multiples of 𝜋∕2.

Proving such a statement about the non-existence of such sG solutions will not be treated in this
thesis. However, a possible method of proof could come from the fact that sG can be derived as the
equation of motion for the continuous limit of a system of pendula coupled by springs subject to a
uniform gravitational field. In this interpretation, the global c-sG solution avoiding integer multiples of
𝜋 would imply the possibility of a situation in which these pendula never return to their resting position
at any time, nor ever swing completely over their pivot points, which certainly contradicts our intuition
of classical mechanics. It is quite remarkable that such a system is at all related to the incompatibility of
hyperbolic and Euclidean geometry exemplified by Hilbert’s Theorem.

4 Pseudospherical Transformations

So far, we have discussed the basic geometrical content of sG; namely the local correspondence between
particular parametrizations of pseudospherical surfaces and local solutions to the equation. Since we
are dealing with a nonlinear PDE, we cannot simply take linear combinations of such sG solutions to
obtain new ones, and a priori, there is no reason to expect that there is any manner in which one can
produce new sG solutions from old. However, the pseudospherical transformations discussed in this
chapter allow us to do exactly that.

In the late 19th and early 20th century, many prominent geometers focused their attention on trans-
formations of surfaces, and developed a rich theory of such transformations. For a comprehensive and
classical review of the subject, see [7]. Of particular use to us are pseudospherical transformations:
methods for transforming one surface of constant negative curvature to another having the same con-
stant negative curvature. Such transformations will allow us to transform known sG solutions to obtain
new ones. Something particularly remarkable about the transformations which we will describe is that,
given an𝑁-soliton solution to sG (whatever this is), we can produce an (𝑁 +1)-soliton solution. In this
way, we will see that the sG satisfies a nonlinear superposition principle, which is a common feature to
all soliton equations.
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4.1 Line Congruences

Before discussing pseudospherical transformations, we will discuss a geometric notion central to many
transformations of surfaces in the classical theory.
Definition 4.1.1. A congruence of lines 𝐿 ∶ 𝑈 ×ℝ → ℝ3, where 𝑈 ⊂ ℝ2, is a function expressible as

𝐿(𝑢, 𝑣, 𝑡) = 𝛼(𝑢, 𝑣) + 𝑡𝑋(𝑢, 𝑣),

where 𝛼,𝑋 ∶ 𝑈 ⊂ ℝ2 → ℝ3 are differentiable.

Note that this is also referred to in the literature as a line congruence, but the slight difference
in nomenclature will be convenient for the discussions which follow. If 𝑋 does not vanish anywhere,
we can consider 𝑋 to be a map from 𝑈 ⊂ ℝ2 to 𝑆2; the magnitude of 𝑋(𝑢, 𝑣) does not change the
congruence of lines since 𝑡 may be any real value. One can understand such a congruence of lines in the
following way: the map 𝛼(𝑢, 𝑣) describes some (not necessarily regular) surface 𝑆 ⊂ ℝ3, and the map
𝑋(𝑢, 𝑣) is a (not necessarily tangent) unit vector field on 𝑆. Thus, the congruence of lines describes a
family of lines which emanate from points on 𝑆 in the direction of the vector field𝑋. If one replaces the
parameter 𝑡 with a smooth function 𝑡(𝑢, 𝑣) ∶ 𝑈 → ℝ, we obtain a new surface 𝑆′ parametrized by the
map

𝛽(𝑢, 𝑣) = 𝛼(𝑢, 𝑣) + 𝑡(𝑢, 𝑣)𝑋(𝑢, 𝑣).

We call 𝑆′ a focal surface of the congruence of lines if the line 𝐿(𝑢, 𝑣, 𝑡) is tangent to 𝑆′ at 𝛽(𝑢, 𝑣) for
all (𝑢, 𝑣) ∈ 𝑈, and 𝑆′ is a regular surface. Note that if 𝑋 is a tangent vector field to the regular surface
𝑆 parametrized by 𝛼(𝑢, 𝑣), then 𝑆 is a focal surface of the congruence of lines 𝐿. The tangent plane of
𝑆′ is spanned by the vector fields 𝛽𝑢 = 𝛼𝑢 + 𝑡𝑢𝑋 + 𝑡𝑋𝑢 and 𝛽𝑣 = 𝛼𝑣 + 𝑡𝑣𝑋 + 𝑡𝑋𝑣, so saying that 𝑋(𝑢, 𝑣)
lies in this plane is to say that ⟨𝛽𝑢 ∧ 𝛽𝑣, 𝑋⟩ = 0, or that the matrix whose column vectors are 𝛽𝑢, 𝛽𝑣, and
𝑋 has zero determinant. Since 𝛽𝑢 and 𝛽𝑣 contain the terms 𝑡𝑢𝑋 and 𝑡𝑣𝑋, respectively, we can discard
them from the matrix without altering the determinant by elementary matrix operations. Thus, we really
have that the matrix whose column vectors are 𝛼𝑢 + 𝑡𝑋𝑢, 𝛼𝑣 + 𝑡𝑋𝑣, and 𝑋 has zero determinant. This
is a quadratic equation in 𝑡, so we can find at most two smooth functions 𝑡1(𝑢, 𝑣) and 𝑡2(𝑢, 𝑣) solving
the equation. In the case that two such functions exist, we have two focal surfaces 𝑆1 and 𝑆2 of the
congruence of lines 𝐿, with parametrizations of the form

𝛽1(𝑢, 𝑣) = 𝛼(𝑢, 𝑣) + 𝑡1(𝑢, 𝑣)𝑋(𝑢, 𝑣)

𝛽2(𝑢, 𝑣) = 𝛼(𝑢, 𝑣) + 𝑡2(𝑢, 𝑣)𝑋(𝑢, 𝑣).

The two focal surfaces are then diffeomorphic via a map which sends a point 𝛽1(𝑢, 𝑣) = 𝑝 ∈ 𝑆1 to a
corresponding point 𝛽2(𝑢, 𝑣) = 𝑝′ ∈ 𝑆2 by moving from 𝑝 along the line 𝛼(𝑢, 𝑣) + 𝑠𝑋(𝑢, 𝑣) a distance
𝑡2(𝑢, 𝑣) − 𝑡1(𝑢, 𝑣). This diffeomorphism clearly has the property that the line joining 𝑝 to 𝑝′ is tangent to
both𝑆1 and𝑆2 at 𝑝 and 𝑝′, respectively. Such a diffeomorphism is referred to as a line congruence. Note
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that congruences of lines with two focal surface are in one-to-one correspondence with line congruences:
we have seen that a congruence of lines defines a diffeomorphism between focal surfaces such that the
line joining a point to its image is tangent to both surfaces at these points. Moreover, if we have two
surface 𝑆1 and 𝑆2, and a line congruence 𝑓 ∶ 𝑆1 → 𝑆2, we can define a congruence of lines for which
𝑆1 and 𝑆2 are focal surfaces. To see this, let x(𝑢, 𝑣) be a parametrization for the surface 𝑆1. Then, the
diffeomorphism 𝑓 has the form

𝑓 (𝛼(𝑢, 𝑣)) = 𝛼(𝑢, 𝑣) + 𝑡(𝑢, 𝑣)𝑋(𝑢, 𝑣),

where 𝑋 is a unit tangent vector field on 𝑆1, and 𝑡 describes the distance one must travel to reach the
point 𝑓 (𝑝). Thus, we have that the congruence of lines

𝐿(𝑢, 𝑣, 𝑡) = 𝛼(𝑢, 𝑣) + 𝑡𝑋(𝑢, 𝑣),

has 𝑆1 and 𝑆2 as focal surfaces. We now specialize to a particularly nice line congruence:
Definition 4.1.2. A line congruence 𝑓 ∶ 𝑆 → 𝑆′ is called a pseudospherical line congruence with
constant 𝜃 if the angle between the tangent planes 𝑇𝑝𝑆 and 𝑇𝑓 (𝑝)𝑆′, is constantly equal to 𝜃, and the
length of the line joining 𝑝 to 𝑓 (𝑝) is constantly equal to sin 𝜃.

Calling such a line congruence pseudospherical is quite suggestive, and comes from the work of
Bianchi and Bäcklund to be discussed next.

4.2 The Bianchi Transformation

We now turn to the simplest transformation on pseudospherical surfaces discovered by the prolific Italian
geometer Luigi Bianchi.
Theorem 4.2.1. Let 𝑆 be a pseudospherical surface, and 𝑓 ∶ 𝑆 → 𝑆′ a pseudospherical line congru-
ence with constant 𝜋∕2 such that the line joining 𝑝 to 𝑓 (𝑝) is not along a principal direction for any
𝑝 ∈ 𝑆. Then 𝑆′ is pseudospherical.

Although we are considering surfaces with 𝐾 ≡ −1, it is also true in general that, given a surface
with𝐾 ≡ −1∕𝜌 where 𝜌 is positive, the Bianchi Transformation will yield another surface with constant
curvature −1∕𝜌.

Proof. Let x ∶ 𝑈 → 𝑆 be an isothermal conjugate parametrization of 𝑆, so that the coefficients of the
fundamental forms may take the values

𝐸 = cos2 𝜙 𝐹 = 0 𝐺 = sin2 𝜙

𝑒 = − sin𝜙 cos𝜙 𝑓 = 0 𝑔 = sin𝜙 cos𝜙,
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At each point x(𝑢, 𝑣), we have a natural orthonormal basis {x𝑢∕
√

𝐸, x𝑣∕
√

𝐺,𝑁} for ℝ3 which
depends smoothly on the parameters 𝑢 and 𝑣. To obtain a parametrization for our transformed surface
𝑆′, we let 𝜃(𝑢, 𝑣) be the angle which the line joining corresponding points of the surfaces makes with
the +x𝑢∕

√

𝐸 axis. We then have a corresponding parametrization y ∶ 𝑈 → 𝑆′ defined by
y(𝑢, 𝑣) = x(𝑢, 𝑣) + cos 𝜃

x𝑢
√

𝐸
+ sin 𝜃

x𝑣
√

𝐺
,

= x(𝑢, 𝑣) + cos 𝜃
cos𝜙

x𝑢 +
sin 𝜃
sin𝜙

x𝑣,

where we have satisfied the condition that the line joining x(𝑢, 𝑣) to y(𝑢, 𝑣) has length constant equal
to sin𝜋∕2 = 1. The other constraints which the construction impose will manifest as conditions on the
function 𝜃. To enforce such conditions, we will first compute the tangents to the parameter curves and
the normal vector field on 𝑆′. The tangent to the parameter curve 𝑣 = const. is given by

y𝑢 = x𝑢 +
𝜙𝑢 cos 𝜃 sin𝜙 − 𝜃𝑢 sin 𝜃 cos𝜙

cos2 𝜙
x𝑢 +

cos 𝜃
cos𝜙

(Γ111x𝑢 + Γ211x𝑣 + 𝑒𝑁)

+
𝜃𝑢 cos 𝜃 sin𝜙 − 𝜙𝑢 sin 𝜃 cos𝜙

sin2 𝜙
x𝑣 +

sin 𝜃
sin𝜙

(Γ112x𝑢 + Γ212x𝑣 + 𝑓𝑁).

Plugging in values of the Christoffel symbols gives

y𝑢 =
[

1 +
𝜙𝑢 cos 𝜃 sin𝜙 − 𝜃𝑢 sin 𝜃 cos𝜙

cos2 𝜙
− 𝜙𝑢 cos 𝜃 tan𝜙 sec𝜙 − 𝜙𝑣 sin 𝜃 sec𝜙

]

x𝑢

+
[

𝜃𝑢 cos 𝜃 sin𝜙 − 𝜙𝑢 sin 𝜃 cos𝜙

sin2 𝜙
+ 𝜙𝑣 cos 𝜃 csc𝜙 + 𝜙𝑢 sin 𝜃 cot 𝜙 csc𝜙

]

x𝑣

− [cos 𝜃 sin𝜙]𝑁.

The terms containing 𝜙𝑢 cancel in the first two components, and the terms containing 𝜙𝑣 and 𝜃𝑢 share a
common factor, so we can write

y𝑢 =
[

1 − sin 𝜃 sec𝜙(𝜃𝑢 + 𝜙𝑣)
]

x𝑢 +
[

cos 𝜃 csc𝜙(𝜃𝑢 + 𝜙𝑣)
]

x𝑣 − [cos 𝜃 sin𝜙]𝑁.

Rewriting in the orthonormal basis gives
y𝑢 = [cos𝜙 − sin 𝜃(𝜃𝑢 + 𝜙𝑣)]

x𝑢
√

𝐸
+ [cos 𝜃(𝜃𝑢 + 𝜙𝑣)]

x𝑣
√

𝐺
− [cos 𝜃 sin𝜙]𝑁.

A similar computation for the tangent to the coordinate curve 𝑢 = const. yields
y𝑣 = [− sin 𝜃(𝜃𝑣 + 𝜙𝑢)]

x𝑢
√

𝐸
+ [sin𝜙 + cos 𝜃(𝜃𝑣 + 𝜙𝑢)]

x𝑣
√

𝐺
+ [sin 𝜃 cos𝜙]𝑁.

Now, the vector representing an infinitesimal displacement from the points y(𝑢, 𝑣) to y(𝑢+𝑑𝑢, 𝑣+𝑑𝑣) is
[cos𝜙𝑑𝑢 − sin 𝜃(𝜃𝑢𝑑𝑢 + 𝜙𝑣𝑑𝑢 + 𝜃𝑣𝑑𝑣 + 𝜙𝑢𝑑𝑣)]

x𝑢
√

𝐸
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+[sin𝜙𝑑𝑣 + cos 𝜃(𝜃𝑢𝑑𝑢 + 𝜙𝑣𝑑𝑢 + 𝜃𝑣𝑑𝑣 + 𝜙𝑢𝑑𝑣)]
x𝑣
√

𝐺
+[sin 𝜃 cos𝜙𝑑𝑣 − cos 𝜃 sin𝜙𝑑𝑢]𝑁.

Since our pseudospherical line congruence has constant 𝜋∕2, we require that the tangent plane of 𝑆′ is
perpendicular to that of 𝑆 at corresponding points. Thus, the 𝑁 component of the normal to 𝑆′ must
vanish everywhere. Moreover, the line joining corresponding points of 𝑆 and 𝑆′, defined by

cos 𝜃
x𝑢
√

𝐸
+ sin 𝜃

x𝑣
√

𝐺
,

must lie in the tangent plane to 𝑆′. Letting 𝑁 ′(𝑢, 𝑣) be the normal vector to 𝑆′, these conditions imply
that

𝑁 ′(𝑢, 𝑣) = sin 𝜃
x𝑢
√

𝐸
− cos 𝜃

x𝑣
√

𝐺
,

where we have fixed an orientation arbitrarily. Our displacement vector must be orthogonal to the normal
vector 𝑁 ′, so we take the dot product of these vectors and equate it to zero:

sin 𝜃 cos𝜙𝑑𝑢 − cos 𝜃 sin𝜙𝑑𝑣 − (sin2 𝜃 + cos2 𝜃)(𝜙𝑣𝑑𝑢 + 𝜃𝑢𝑑𝑢 + 𝜙𝑢𝑑𝑣 + 𝜃𝑣𝑑𝑣) = 0.

Simplifying a bit and multiplying through by −1 leaves us with

(𝜃𝑢 + 𝜙𝑣 − sin 𝜃 cos𝜙)𝑑𝑢 + (𝜃𝑣 + 𝜙𝑢 + cos 𝜃 sin𝜙)𝑑𝑣 = 0.

This relation holds for any infinitesimal displacement, so that both terms inside the parentheses must be
identically zero. Now, the function 𝜃 satisfies the conditions

𝜃𝑢 + 𝜙𝑣 = sin 𝜃 cos𝜙

𝜃𝑣 + 𝜙𝑢 = −cos 𝜃 sin𝜙.

By differentiating the first and second equations with respect to 𝑢 and 𝑣, respectively, and subtracting,
we see that

𝜃𝑢𝑢 − 𝜃𝑣𝑣 = sin 𝜃 cos 𝜃,

so 𝜃 is an l-sG solution. Substituting the above relations into the expressions for y𝑢 and y𝑣 gives

y𝑢 = [cos𝜙 − sin2 𝜃 cos𝜙]
x𝑢
√

𝐸
+ [sin 𝜃 cos 𝜃 cos𝜙]

x𝑣
√

𝐺
− [cos 𝜃 sin𝜙]𝑁

y𝑣 = [sin 𝜃 cos 𝜃 sin𝜙]
x𝑢
√

𝐸
+ [sin𝜙 − cos2 𝜃 sin𝜙]

x𝑣
√

𝐺
+ [sin 𝜃 cos𝜙]𝑁,

which simplify to

y𝑢 = [cos2 𝜃 cos𝜙]
x𝑢
√

𝐸
+ [sin 𝜃 cos 𝜃 cos𝜙]

x𝑣
√

𝐺
− [cos 𝜃 sin𝜙]𝑁
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y𝑣 = [sin 𝜃 cos 𝜃 sin𝜙]
x𝑢
√

𝐸
+ [sin2 𝜃 sin𝜙]

x𝑣
√

𝐺
+ [sin 𝜃 cos𝜙]𝑁.

Now we can compute the coefficients of the first fundamental form for 𝑆′, which we will denote 𝐸′, 𝐹 ′,
and 𝐺′. Using the fact that our basis is orthonormal (recall that 𝐹 = 0), we have

𝐸′ = cos4 𝜃 cos2 𝜙 + sin2 𝜃 cos2 𝜃 cos2 𝜙 + cos2 𝜃 sin2 𝜙

= cos2 𝜃.

𝐹 ′ = sin 𝜃 cos3 𝜃 sin𝜙 cos𝜙 + sin3 𝜃 cos 𝜃 sin𝜙 cos𝜙 − sin 𝜃 cos 𝜃 sin𝜙 cos𝜙

= 0.

𝐺′ = sin2 𝜃 cos2 𝜃 sin2 𝜙 + sin4 𝜃 sin2 𝜙 + sin2 𝜃 cos2 𝜙

= sin2 𝜃.

To emphasize how nicely things have worked out, we note here that, given the original surface 𝑆 with
first fundamental form coefficients

𝐸 = cos2 𝜙 𝐹 = 0 𝐺 = sin2 𝜙,

we see that the first fundamental coefficients for 𝑆′ in the corresponding parametrization are
𝐸′ = cos2 𝜃 𝐹 ′ = 0 𝐺′ = sin2 𝜃,

and by direct computation, we also see that the second fundamental form coefficients for 𝑆′ are
𝑒 = − sin 𝜃 cos 𝜃 𝑓 = 0 𝑔 = sin 𝜃 cos 𝜃.

Thus, parametrizing our surface 𝑆 in lines of curvature, we see that the corresponding parametrization
for 𝑆′ given by the line congruence is also in lines of curvature. This means that line of curvatures on
𝑆 are sent to lines of curvature on 𝑆′ by 𝑓, and the same holds true for asymptotic lines (although we
do not actually know that 𝑆′ has asymptotic lines yet since we have not computed its curvature). Such
a line congruence which sends asymptotic lines to asymptotic lines is called a W-congruence, named
after Julius Weingarten, and plays an important role in the transformations of surfaces with non-positive
curvature. Here we see why the requirement that 𝜃 is never along a principal direction should be enforced;
it means that the image of 𝜃 lies in the interval (0, 𝜋∕2), so the transformed surface is everywhere regular.
The Christoffel symbols for 𝑆′ will of course be given by

Γ111 = −𝜃𝑢 tan 𝜃 Γ112 = −𝜃𝑣 tan 𝜃 Γ122 = −𝜃𝑢 tan 𝜃

Γ211 = 𝜃𝑣 cot 𝜃 Γ212 = 𝜃𝑢 cot 𝜃 Γ222 = 𝜃𝑣 cot 𝜃.

Plugging these values into the Gauss equation will give us a value for the Gauss curvature on the surface
𝑆′ ∶

(𝜃𝑢 cot 𝜃)𝑢 − (𝜃𝑣 cot 𝜃)𝑣 − 𝜃2𝑣 + 𝜃
2
𝑢 cot

2 𝜃 − 𝜃2𝑣 cot
2 𝜃 + 𝜃2𝑢 = −cos2 𝜃𝐾.
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Simplifying the expression gives us

(𝜃𝑢𝑢 − 𝜃𝑣𝑣) cot 𝜃 = −cos2 𝜃𝐾,

and since we know that 𝜃 is an l-sG solution, the result is 𝐾 ≡ −1, so that 𝑆′ is pseudospherical.

The most miraculous geometrical result here is that the meaning of our function 𝜃 is two-fold. In
addition to its definition as describing the oriented angle which the line joining corresponding points of
𝑆 and 𝑆′ makes with the +x𝑢∕

√

𝐸 axis, the function 𝜃 is also an l-sG solution describing an isothermal-
conjugate parametrization for 𝑆′. On the analytical side of things, we also see that we have discovered
a set of coupled differential equations with a remarkable property. In particular, if we have 𝜙, 𝜓 ∶ 𝑈 →

ℝ2 → ℝ smooth functions satisfying

𝜓𝑢 + 𝜙𝑣 = sin𝜓 cos𝜙

𝜓𝑣 + 𝜙𝑢 = −cos𝜓 sin𝜙,

then both𝜓 and𝜙must be solutions to l-sG. This is seen by computing𝜓𝑢𝑢−𝜓𝑣𝑣 and𝜙𝑢𝑢−𝜙𝑣𝑣 and using
the fact that 𝜕2∕𝜕𝑣𝜕𝑢 = 𝜕2∕𝜕𝑢𝜕𝑣. Thus, if 𝜙 is a known function, we can integrate the relations to obtain
a new l-sG solution 𝜓. With an appropriate change of variables, the equations derived become Riccati
in 𝜓 , as remarked in [6]. Thus, we must only find one solution, and the general solution is obtainable by
integration.

Another important note here is that, although we assumed the existence of a pseudospherical line
congruence, we actually constructed this line congruence by means of integrating the relations to obtain
the function which we called 𝜃.

4.3 The Bäcklund Transformation

Soon after Bianchi’s discovery of the transformation described above, the Swedish geometer Albert
Victor Bäcklund realized that the construction could be generalized in such a way that one can produce a
parametrized family of sG solutions from a known seed solution. In particular, he proved the following:
Theorem 4.3.1. Let 𝑆 be a pseudospherical surface, and 𝑓 ∶ 𝑆 → 𝑆′ a pseudospherical line congru-
ence with constant 𝜎 ∈ (0, 𝜋) such that the line joining 𝑝 to 𝑓 (𝑝) is not along a principal direction. Then
𝑆′ is pseudospherical.

The only difference between the transformations of Bäcklund and Bianchi is that, while Bianchi
assumed that the tangent planes of 𝑆 and 𝑆′ were orthogonal at corresponding points, Bäcklund tells
us that we may allow the angle between tangent planes to be any constant in (0, 𝜋), and we still obtain
another pseudospherical surface. Thus, while Bianchi only generates one new pseudospherical surface
(up to a constant of integration), Bäcklund allows us to find uncountably many.
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Proof. Although the definition of a pseudospherical line congruence says that the line joining corre-
sponding points of 𝑆 and 𝑆′ must be constantly equal to sin 𝜎, we will see that this assumption actually
follows from the fact that the angle between tangent planes is constantly equal to 𝜎. Thus, we will just as-
sume that the line joining corresponding points of 𝑆 and 𝑆′ is some positive constant 𝜆. Once again, we
will let x(𝑢, 𝑣) ∶ 𝑈 → 𝑆 be an isothermal-conjugate parametrization. The corresponding parametriza-
tion of the surface 𝑆′ is then

y(𝑢, 𝑣) = x(𝑢, 𝑣) + 𝜆 cos 𝜃
x𝑢
√

𝐸
+ 𝜆 sin 𝜃

x𝑣
√

𝐺
,

where 𝜃 is defined similarly to that in the proof for Bianchi’s Transformation. The tangents to the pa-
rameter curves are given by

y𝑢 =
[

cos𝜙 − 𝜆 sin 𝜃(𝜃𝑢 + 𝜙𝑣)
] x𝑢
√

𝐸
+
[

𝜆 cos 𝜃(𝜃𝑢 + 𝜙𝑣)
] x𝑣
√

𝐺
− [𝜆 cos 𝜃 sin𝜙]𝑁.

y𝑣 =
[

−𝜆 sin 𝜃(𝜃𝑣 + 𝜙𝑢)
] x𝑢
√

𝐸
+
[

sin𝜙 + 𝜆 cos 𝜃(𝜃𝑣 + 𝜙𝑢)
] x𝑣
√

𝐺
+ [𝜆 sin 𝜃 cos𝜙]𝑁.

Just as for the Bianchi case, we express the displacement in ℝ3 which results from an infinitesimal
displacement in parameter space. The resulting vector is

[

cos𝜙𝑑𝑢 − 𝜆 sin 𝜃(𝜙𝑣𝑑𝑢 + 𝜃𝑢𝑑𝑢 + 𝜙𝑢𝑑𝑣 + 𝜃𝑣𝑑𝑣)
] x𝑢
√

𝐸

+
[

sin𝜙𝑑𝑣 + 𝜆 cos 𝜃(𝜙𝑣𝑑𝑢 + 𝜃𝑢𝑑𝑢 + 𝜙𝑢𝑑𝑣 + 𝜃𝑣𝑑𝑣)
] x𝑣
√

𝐺
+ [𝜆 sin 𝜃 cos𝜙𝑑𝑣 − 𝜆 cos 𝜃 sin𝜙𝑑𝑢]𝑁.

Now, since the unit normal of 𝑆 and 𝑆′ meet at constant angle 𝜎, the𝑁 component of our normal vector
field on 𝑆′, denoted𝑁 ′, should take the constant value cos 𝜎. Imposing the additional condition that the
line joining corresponding points of our surfaces lies in the tangent plane of 𝑆′ gives us the formula

𝑁 ′ = sin 𝜎 sin 𝜃
x𝑢
√

𝐸
− sin 𝜎 cos 𝜃

x𝑣
√

𝐺
+ cos 𝜎𝑁.

We again take the dot product of the normal vector and our infinitesmal displacement and set it to zero.
We obtain similar expressions as in the case of Bianchi. The 𝑑𝑢 and 𝑑𝑣 terms of this equation must
vanish everywhere, which leads us to the relations

𝜆 sin 𝜎(𝜃𝑢 + 𝜙𝑣) = sin 𝜎 sin 𝜃 cos𝜙 − 𝜆 cos 𝜎 cos 𝜃 sin𝜙

𝜆 sin 𝜎(𝜃𝑣 + 𝜙𝑢) = − sin 𝜎 cos 𝜃 sin𝜙 + 𝜆 cos 𝜎 sin 𝜃 cos𝜙.

We can find the promised expression which relates 𝜆 and 𝜎 by differentiating these equations with respect
to 𝑣 and 𝑢, respectively, and subtracting the results. The left-hand side reads 𝜆 sin 𝜎(𝜙𝑣𝑣 − 𝜙𝑢𝑢), which
can be expressed as −𝜆 sin 𝜎 sin𝜙 cos𝜙 since 𝜙 solves l-sG. After a bit of algebra, the equation becomes

−𝜆 sin 𝜎 sin𝜙 cos𝜙 = 1
𝜆 sin 𝜎

(𝜆2 cos2 𝜎 − sin2 𝜎) sin𝜙 cos𝜙.
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By simplifying we see that 𝜆2 = sin2 𝜎. Since we are assuming that both quantities are non-negative,
we obtain 𝜆 = sin 𝜎, recovering what was before required by the definition of pseudospherical line
congruence. Our relations now read

sin 𝜎(𝜃𝑢 + 𝜙𝑣) = sin 𝜃 cos𝜙 − cos 𝜎 cos 𝜃 sin𝜙

sin 𝜎(𝜃𝑣 + 𝜙𝑢) = − cos 𝜃 sin𝜙 + cos 𝜎 sin 𝜃 cos𝜙.

Notice that, as we had hoped, setting 𝜎 = 𝜋∕2 obtains the analogous relations of the Bianchi Transfor-
mation. Now, if we differentiate the first and second equations with respect to 𝑢 and 𝑣, respectively, and
subtract the results, more of the same algebra as before gives us an anticipated relation, namely

𝜃𝑢𝑢 − 𝜃𝑣𝑣 = sin 𝜃 cos 𝜃.

So far, we have found a more general relation which generates new l-sG solutions from old. To confirm
that our new surface is pseudospherical, we compute the first fundamental form coefficients. Using the
equations obtained above, the tangent vectors to the coordinate curves are

y𝑢 = [cos 𝜃(cos 𝜃 cos𝜙 + cos 𝜎 sin 𝜃 sin𝜙)]
x𝑢
√

𝐸

+[cos 𝜃(sin 𝜃 cos𝜙 − cos 𝜎 cos 𝜃 sin𝜙]
x𝑣
√

𝐺
− [sin 𝜎 cos 𝜃 sin𝜙]𝑁

y𝑣 = [sin 𝜃(cos 𝜃 sin𝜙 − cos 𝜎 sin 𝜃 cos𝜙)]
x𝑢
√

𝐸

+[sin 𝜃(sin 𝜃 sin𝜙 + cos 𝜎 cos 𝜃 cos𝜙)]
x𝑣
√

𝐺
+ [sin 𝜎 sin 𝜃 cos𝜙]𝑁.

By taking dot products, we retrieve our coefficients. Thankfully for us, we obtain
𝐸′ = cos2 𝜃 𝐹 ′ = 0 𝐺′ = sin2 𝜃.

Since we have the exact same expressions as in Bianchi, we need not repeat the computations; the Gauss
equation shows that 𝐾 ≡ −1.

As before with Bianchi, we have discovered that if 𝜙, 𝜓 ∶ 𝑈 ⊂ ℝ2 → ℝ are smooth and satisfy
sin 𝜎(𝜓𝑢 + 𝜙𝑣) = sin𝜓 cos𝜙 − cos 𝜎 cos𝜓 sin𝜙

sin 𝜎(𝜓𝑣 + 𝜙𝑢) = − cos𝜓 sin𝜙 + cos 𝜎 sin𝜓 cos𝜙,

then 𝜙 and 𝜓 solve l-sG. Thus, if 𝜙 is known, then we obtain a family of l-sG solutions parametrized
by 𝜎 ∈ (0, 𝜋). This represents the first non-trivial example of what are now simply called Bäcklund
Transformations for differential equations. Although there is not a strict consensus on definition, we
will give a definition as follows. Suppose that 𝜙(𝑥, 𝑡) solves some differential equation, say

𝑃 [𝜙(𝑥, 𝑡)] = 0,
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where 𝑃 is a differential operator which can be nonlinear and involve both 𝑥 and 𝑡 derivatives, and
suppose that 𝜓(𝑥, 𝑡) satisfies

𝐵𝑖[𝜙(𝑥, 𝑡), 𝜓(𝑥, 𝑡)] = 0,

where the 𝐵𝑖’s are a finite number of differential operators involving only first order derivatives. Then,
if 𝜓 is found to also satisfy 𝑃 [𝜓(𝑥, 𝑡)] = 0, then the operators 𝐵𝑖 are referred to as a Bäcklund Transfor-
mation for the differential equation 𝑃 .

A familiar example of a Bäcklund Transformation is the Cauchy-Riemann system; for real valued
functions 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦), if

𝑢𝑥 = 𝑣𝑦 𝑢𝑦 = −𝑣𝑥,

then 𝑢 and 𝑣 satisfy the Laplace equation:

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 𝑣𝑥𝑥 + 𝑣𝑦𝑦 = 0,

and in particular, the function 𝑓 (𝑥+ 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) is holomorphic. Bäcklund Transformations
are most useful in the case that the corresponding differential equation is nonlinear, so this example
is rather trivial, but gives a feel for the machinery nonetheless. Note that, in both the Cauchy-Riemann
system and the classical Bäcklund Transformation derived in this section, our Bäcklund Transformations
have the property that, so long as 𝜙 and 𝜓 satisfy a system of coupled differential equations, they must
both satisfy some other equation, in our cases sG or the Laplace equation. This need not be the case in
general; we might require that one of the functions is already known to satisfy the differential equation
for the other to as well.

This piece of machinery has proven quite useful in the study of differential equations, and as we
have remarked before, all soliton equations enjoy Bäcklund Transformations. We can certainly take pride
in the fact that the origin of such transformations rests in the geometry of pseudospherical surfaces.

4.3.1 The Bäcklund Transformation in Asymptotic Coordinates

From hereon, we will refer to both the transformation of pseudospherical surfaces and the system of
differential equations relating solutions to sG as a Bäcklund Transformation, with the hopes that context
will spare the reader any confusion. Although our isothermal-conjugate parameters were useful in the
preceding constructions by providing a smoothly varying orthonormal frame on our surface, we have
already seen that something is gained by taking the asymptotic perspective, i.e. the geometric signifi-
cance of sG solutions as describing the angle between asymptotic curves in an asymptotic Chebyshev
net. It should also be noted that the Bäcklund Transformation written in asymptotic coordinates is often
considered as canonical for sG.

The aim of this section is then to produce the differential equations derived in the theorem of
Bäcklund in their corresponding c-sG form. We will begin by supposing that 𝜙∕2 is an l-sG solution.
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Then the Bäcklund Transformation for the function 𝜃∕2 reads

sin 𝜎(𝜃𝑢∕2 + 𝜙𝑣∕2) = sin 𝜃∕2 cos𝜙∕2 − cos 𝜎 cos 𝜃∕2 sin𝜙∕2

sin 𝜎(𝜃𝑣∕2 + 𝜙𝑢∕2) = − cos 𝜃∕2 sin𝜙∕2 + cos 𝜎 sin 𝜃∕2 cos𝜙∕2,

where 𝜎 ∈ (0, 𝜋).Applying the coordinate transformation 𝑥 = 𝑢+𝑣 and 𝑡 = 𝑢−𝑣,we obtain the relations
sin 𝜎
4

(𝜃𝑥 + 𝜃𝑡 + 𝜙𝑥 − 𝜙𝑡) = sin 𝜃∕2 cos𝜙∕2 − cos 𝜎 cos 𝜃∕2 sin𝜙∕2

sin 𝜎
4

(𝜃𝑥 − 𝜃𝑡 + 𝜙𝑥 + 𝜙𝑡) = − cos 𝜃∕2 sin𝜙∕2 + cos 𝜎 sin 𝜃∕2 cos𝜙∕2.

We can add and subtract these equations, respectively, and arrive at
sin 𝜎
2

(𝜃𝑥 + 𝜙𝑥) = (1 + cos 𝜎)(sin 𝜃∕2 cos𝜙∕2 − cos 𝜃∕2 sin𝜙∕2)

sin 𝜎
2

(𝜃𝑡 − 𝜙𝑡) = (1 − cos 𝜎)(sin 𝜃∕2 cos𝜙∕2 + cos 𝜃∕2 sin𝜙∕2).

We can divide through by sin 𝜎, and the terms containing 𝜎 are then equal to cot 𝜎∕2 for the first equation
and tan 𝜎∕2 for the second equation. We can use trigonometric identities to simplify the second terms
of the right-hand sides of these equations. Setting 𝜆 = tan 𝜎∕2, and multiplying through by 2 gives

𝜃𝑥 + 𝜙𝑥 =
2
𝜆
sin

(

𝜃 − 𝜙
2

)

𝜃𝑡 − 𝜙𝑡 = 2𝜆 sin
(

𝜃 + 𝜙
2

)

.

Once can easily check that 𝜙 and 𝜃 both solve c-sG if these relations are satisfied. What is new here
is that our coupled differential equations are ordinary, and we now have a transformation parameter 𝜆
which may take any positive real as a value, the special case of the Bianchi transformation corresponding
to 𝜆 = 1.

Although the classical Bäcklund Transformation required us to work with regular surfaces, we see
that the corresponding differential equations apply just as well to sG solutions which do not represent
surfaces, namely the constant solutions. Thus, we should try to perform the simplest possible Bäcklund
Transformation, beginning with the seed solution 𝜙 ≡ 0. In asymptotic coordinates, our relations read

𝜃𝑥 =
2
𝜆
sin 𝜃

2

𝜃𝑡 = 2𝜆 sin 𝜃
2
.

Integration of these relations then returns the function

𝜃(𝑥, 𝑡) = 4 arctan
(

𝑒𝑥∕𝜆+𝜆𝑡
)

,
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where we throw away the constant of integration since it does not change the resulting surface obtained
in a non-trivial manner. These are the 1-solitons of c-sG. Setting 𝜆 = 1, we obtain the "Bianchi Trans-
formation of a line," which can be written as

𝜙 = 4 arctan (𝑒𝑣) ,

where we have set 𝑣 = 𝑥 + 𝑡. To place this into a previously encountered form, we notice that

𝑒𝑣 = tan(𝜙∕4),

from which it follows that
sech𝑣 = sin(𝜙∕2),

and so we see that
cos𝜙 = 1 − 2sech2𝑣,

where our use of a half-angle identity means that this relation only holds for non-positive reals. Since
this corresponds, up to coordinate transformations, to the l-sG solution for the pseudosphere, we see that
the Bianchi transformation of a line is the pseudosphere, where the soliton solution obtained is globally
defined, and extends the pseudosphere such that the generating curve is defined over the non-zero reals.

4.4 Bianchi’s Permutability Theorem

Upon the integration of the relations obtained in the previous section, we obtain a family of sG solutions
parametrized by 𝜆. One could just as easily wish to perform subsequent Bäcklund Transformations to
obtain other families of solutions. This involves solving systems of ODEs which quickly become compli-
cated. However, a striking result of Bianchi tells us that we can compute the result of iterated Bäcklund
transformations by algebra alone, given that we have enough seed solutions. The result also tells us that
iterative Bäcklund transformations are commutative. To avoid verbosity, we will write 𝐵𝜎𝑆 to represent
the surface obtained by performing the Bäcklund Transformation with parameter 𝜎 to the surface 𝑆.
Theorem 4.4.1. (Bianchi’s Permutability Theorem) Let 𝑆 be a pseudospherical surface, and 𝜎1, 𝜎2 ∈
(0, 𝜋). Then 𝐵𝜎2𝐵𝜎1𝑆 and 𝐵𝜎1𝐵𝜎2𝑆 represent the same pseudospherical surface. Moreover, the sG
solution corresponding to 𝐵𝜎2𝐵𝜎1𝑆 can be obtained by algebra alone, given that the sG solutions cor-
responding to 𝑆,𝐵𝜎1𝑆, and 𝐵𝜎2𝑆 are known.

Note that we are assuming the existence of Bäcklund Transformations, which only holds locally in
general.

Proof. The proof is simple when considering c-sG solutions. We will assume that𝜙 is the corresponding
c-sG solution for the surface 𝑆, and that 𝜃1, 𝜃2 are those corresponding to 𝐵𝜎1𝑆 and 𝐵𝜎2𝑆 respectively.
We will allow 𝜔 to be the c-sG solution corresponding to 𝐵𝜎2𝐵𝜎1𝑆 and 𝐵𝜎1𝐵𝜎2𝑆. If we find that such a
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function exists, then we will see that both surfaces have the same c-sG solution, since Bäcklund Trans-
formations are unique up to constants of integration, which shows that the surfaces are indeed the same.
Letting 𝜆1 = tan 𝜎1∕2 and 𝜆2 = tan 𝜎2∕2, we have the equations

𝜃1,𝑡 = 𝜙𝑡 + 2𝜆1 sin(
𝜃1 + 𝜙

2
)

𝜃2,𝑡 = 𝜙𝑡 + 2𝜆2 sin(
𝜃2 + 𝜙

2
)

𝜔𝑡 = 𝜃1,𝑡 + 2𝜆2 sin(
𝜔 + 𝜃1

2
)

𝜔𝑡 = 𝜃2,𝑡 + 2𝜆1 sin(
𝜔 + 𝜃2

2
)

Adding the first and third equations and subtracting the second and fourth from this gives

0 = 𝜆1

[

sin
(

𝜃1 + 𝜙
2

)

− sin
(

𝜔 + 𝜃2
2

)]

+ 𝜆2

[

sin
(

𝜔 + 𝜃1
2

)

− sin
(

𝜃2 + 𝜙
2

)]

.

Using a familiar trigonometric identity gives

0 = 𝜆1 sin
(

𝜔 + 𝜙 + 𝜃2 + 𝜃1
4

)

cos
(

(𝜔 − 𝜙) + (𝜃2 − 𝜃1)
4

)

+𝜆2 sin
(

𝜔 + 𝜙 + 𝜃2 − 𝜃1
4

)

cos
(

(𝜔 − 𝜙) − (𝜃2 − 𝜃1)
4

)

.

Simplification and more trigonometry yields
𝜆2
𝜆1

[

cos
(

𝜔 − 𝜙
4

)

sin
(

𝜃2 − 𝜃1
4

)

− sin
(

𝜔 − 𝜙
4

)

cos
(

𝜃2 − 𝜃1
4

)]

= − sin
(

𝜔 − 𝜙
4

)

cos
(

𝜃2 − 𝜃1
4

)

− cos
(

𝜔 − 𝜙
4

)

sin
(

𝜃2 − 𝜃1
4

)

,

which can be rearranged to the expression
(

𝜆2
𝜆1

+ 1
)

cos
(

𝜔 − 𝜙
4

)

sin
(

𝜃2 − 𝜃1
4

)

=
(

𝜆2
𝜆1

− 1
)

sin
(

𝜔 − 𝜙
4

)

cos
(

𝜃2 − 𝜃1
4

)

.

Finally, we arrive at a very nice relation between these c-sG solutions:

tan
(

𝜔 − 𝜙
4

)

=
𝜆2 + 𝜆1
𝜆2 − 𝜆1

tan
(

𝜃2 − 𝜃1
4

)

.

In particular, the function 𝜔 does exist and has the algebraic expression

𝜔 = 𝜙 + 4 arctan
[

𝜆2 + 𝜆1
𝜆2 − 𝜆1

tan
(

𝜃2 − 𝜃1
4

)]

.
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Given the unproven fact that applying the Bäcklund Transformation to an𝑁-soliton solution to sG
returns an (𝑁 + 1)-soliton solution, Bianchi’s Permutability Theorem gives a method for obtaining 𝑁-
soliton solutions from single soliton and constant solutions. Indeed, if we have 𝑁 distinct single soliton
solutions to c-sG, say 𝜃1, ..., 𝜃𝑁 , we can apply the formula above to obtain the two-soliton solutions
𝜙1, ..., 𝜙𝑁−1,where𝜙𝑖 is obtained from the constant zero solution as well as the single soliton solutions 𝜃𝑖
and 𝜃𝑖+1.We can then iterate this process to obtain an𝑁-soliton solution, and we can do so algebraically,
which is quite miraculous considering that we are really producing successively richer solutions to a
nonlinear PDE. Of course, these functions will become more and more complicated, but one must admit
that algebra is a wonderful alternative to integration of coupled differential equations.

As remarked in section 3.5.1, Bianchi’s Permutability Theorem tells us that soliton solutions to sG
are expressible in terms of elementary functions, so that the sinh- and cosh-type surfaces of revolution
are not soliton surfaces.

As an example, let us write down the expression for the 2-solitons of sG. We begin with two distinct
1-soliton solutions, which have the form

𝜃1 = 4 arctan
(

𝑒𝑥∕𝜆1+𝑡𝜆1
)

𝜃2 = 4 arctan
(

𝑒𝑥∕𝜆2+𝑡𝜆2
)

,

where 𝜆1 ≠ 𝜆2 ≠ 0. Using the formula from the proof and trigonometry, we then see that

𝜔 = 4 arctan
(

𝜆2 + 𝜆1
𝜆2 − 𝜆1

𝑒𝑥∕𝜆2+𝑡𝜆2 − 𝑒𝑥∕𝜆1+𝑡𝜆1
1 + 𝑒𝑥∕𝜆1+𝑡𝜆1𝑒𝑥∕𝜆2+𝑡𝜆2

)

,

which consists of two ’kinks’ traveling at constant speed and interacting with each other by simply
summing.

5 Soliton Equations

To make more transparent the relationship between soliton equations and pseudospherical surface theory,
we give a brief exposition of the inverse scattering method for solving soliton equations, and remark the
connection between this method and the discussions of chapters 3 and 4

5.1 Inverse Scattering for the Schrödinger Equation

We now discuss the basic idea of the inverse scattering transform for the time independent Schrödinger
equation

𝜓𝑥𝑥(𝑥, 𝑘) + 𝑉 (𝑥)𝜓(𝑥, 𝑘) = 𝑘2𝜓(𝑥, 𝑘),

and suggest how the use of this equation allows one to produce solutions to the KdV equation, the first
soliton equation to be solved by inverse scattering. See [3] for a more detailed exposition.
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5.1.1 The Direct Spectral Problem

We will first summarize the direct spectral problem for the Schrödinger equation. We begin with a
smooth function 𝑢 ∶ ℝ → ℝ such that the quantity

∫

∞

−∞

(

1 + |𝑥|
)

|𝑢(𝑥)|𝑑𝑥

is finite. We want to determine the character of solutions to the time independent Schrödinger equation
subject to the potential 𝑢(𝑥), which reads

−𝜓𝑥𝑥(𝑥, 𝑘) + 𝑢(𝑥)𝜓(𝑥, 𝑘) = 𝑘2𝜓(𝑥, 𝑘).

Solutions to this equation are the eigenfunctions of the Schrödinger operator 𝑑2∕𝑑𝑥2 + 𝑢, which have
eigenvalues 𝑘2 ∈ ℝ. The spectrum of the Schrödinger operator consists of a continuous component
corresponding to 𝑘 ∈ ℝ, as well as a finite (possibly empty) collection of discrete negative eigenvalues
{𝑘21, ..., 𝑘

2
𝑛}. The eigenfunctions corresponding to the eigenvalues 𝑘2 such that 𝑘 ∈ ℝ are the unique

solutions satisfying the asymptotic boundary conditions

𝜓(𝑥, 𝑘) → 𝑇 (𝑘)𝑒−𝑖𝑘𝑥, 𝑥→ −∞

𝜓(𝑥, 𝑘) → 𝑒−𝑖𝑘𝑥 + 𝑅(𝑘)𝑒𝑖𝑘𝑥, 𝑥→ ∞,

where 𝑇 (𝑘) and 𝑅(𝑘) are known as the transmission and reflection coefficients, respectively. The idea
here is that a wave is shot in ’from infinity,’ and after interaction with the potential 𝑢, some of this wave is
reflected back from whence it came, and some is transmitted through the potential field, asymptotically
approaching a wave (recall that the potential 𝑢(𝑥) decays quickly for large |𝑥|). We will quote the result
that the transmission and reflection coefficients for 𝑘 ≠ 0 are given by

𝑇 (𝑘) = 1 + 1
2𝑖𝑘 ∫

∞

−∞
𝑒𝑖𝑘𝑥𝜓(𝑥, 𝑘)𝑢(𝑥)𝑑𝑥

𝑅(𝑘) = 1
2𝑖𝑘 ∫

∞

−∞
𝑒−𝑖𝑘𝑥𝜓(𝑥, 𝑘)𝑢(𝑥)𝑑𝑥.

We note also that, if 𝑘 is real, we have the identity |𝑅(𝑘)|2+ |𝑇 (𝑘)|2 = 1, so that knowledge of the reflec-
tion coefficients easily gives the transmission coefficients, and vice versa. In the physical interpretation,
this is a manifestation of conservation of energy. As for the discrete negative eigenvalues, we have that

𝑘𝑗 = 𝑖𝑝𝑗 ,

where the 𝑝𝑗 are real and positive, and 𝑖 is the imaginary unit. The eigenfunctions corresponding to these
eigenvalues are known to physicists as ’bound states.’ Viewed as a quantum mechanical system, the
eigenvalue 𝑘2𝑗 corresponds to the energy of a particle whose wavefunction is given by the eigenfunction
associated to 𝑘2𝑗 . Since this energy is negative, the particle cannot escape the potential, so will not scatter

59



off to infinity. Observe that, if the potential 𝑢(𝑥) is everywhere negative, there will be no bound states,
and indeed, the number of negative eigenvalues corresponds in a precise sense to the non-negativity of
the potential 𝑢. From this discussion, it is not surprising that the eigenfunctions associated to negative
eigenvalues are square integrable. Denoting the eigenfunction associated to 𝑘2𝑗 as 𝑓𝑗(𝑥), the asymptotic
behavior of 𝑓𝑗 is given by

𝑓𝑗(𝑥) → 𝑒−𝑝𝑗𝑥

as 𝑥→ ∞. By square integrability, we have normalization coefficients {𝜌1, ..., 𝜌𝑛} given by
1
𝜌𝑗

= ∫

∞

−∞
𝑓 2
𝑛 (𝑥)𝑑𝑥.

We define the spectral transform of 𝑢(𝑥) as the data
𝑆[𝑢] = {𝑅(𝑘) for 𝑘 ∈ ℝ, 𝑝1, ..., 𝑝𝑛, 𝜌1, ..., 𝜌𝑛}.

The determination of this data from a known potential 𝑢 is the content of the direct spectral problem.

5.1.2 The Inverse Spectral Problem

The inverse spectral problem is the task of recovering the potential 𝑢 ∶ ℝ → ℝ from a given spectral
transform. In particular, if we have a function 𝑅 ∶ ℝ → ℂ which satisfies |𝑅(𝑘)| ≤ 1, and

lim
𝑘→±∞

𝑅(𝑘) = 0,

and given arbitrary positive numbers 𝑝1, ..., 𝑝𝑛, 𝜌1, ..., 𝜌𝑛, can we obtain a smooth, rapidly decaying po-
tential 𝑢(𝑥) which has this data as its spectral transform? The answer is yes, and we will state how to
construct the potential without proof. The crucial step is the use of the Gel’fand-Levitan-Marchenko
equation, which reads

𝐾(𝑥, 𝑦) +𝑀(𝑥 + 𝑦) + ∫

∞

𝑥
𝐾(𝑥, 𝑧)𝑀(𝑧 + 𝑦)𝑑𝑧 = 0, 𝑦 > 𝑥.

The function 𝑀 is given in terms of the spectral transform data by

𝑀(𝑥) = 1
2𝜋 ∫

∞

−∞
𝑅(𝑘)𝑒𝑖𝑘𝑥𝑑𝑥 +

𝑛
∑

𝑗=1
𝜌𝑗𝑒

−𝑝𝑗𝑥.

Here we see a justification as to why the inverse scattering transform is sometimes viewed as a nonlinear
analogue to the Fourier transform: the function𝑀 is the inverse Fourier transform of the reflection coef-
ficient together with a contribution from the discrete spectrum of the sought after Schrödinger operator.
Defining the function

𝑤(𝑥) = 2 lim
𝜖→0

[𝐾(𝑥, 𝑥 + 𝜖)] ,

the potential is simply 𝑢 = −𝑤𝑥. As an example, consider the scattering data
𝑆 = {𝑅 ≡ 0, 𝑝1 = 𝑝, 𝜌1 = 𝜌},
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a reflectionless potential with a single discrete eigenvalue. Then
𝑀(𝑥) = 𝜌𝑒−𝑝𝑥,

and solving the now separable Gel’fan-Levitan-Marchenko equation yields the potential

𝑢(𝑥) = −
2𝑝2

cosh2(𝑝𝑥 − 1∕2 ln(𝜌∕2𝑝))
.

5.1.3 The Inverse Scattering Method

Now, we will briefly describe the application of the Schrödinger scattering problem in solving the initial
value problem for the KdV equation. Suppose that we have some function 𝑢0(𝑥) ∶ ℝ → ℝ which is
smooth and vanishes sufficiently fast for large |𝑥| so that it may play the role of the potential in the direct
scattering problem. Then, we can determine the scattering data here as sketched above, obtaining

𝑆(0) = {𝑅(𝑘, 0), 𝑝1(0), ..., 𝑝𝑛(0), 𝜌1(0), ..., 𝜌𝑛(0)}.

Suppose also that we search for a function 𝑢(𝑥, 𝑡) satisfying the KdV equation
𝑢𝑡 + 𝑢𝑥𝑥𝑥 − 6𝑢𝑢𝑥 = 0

subject to the constraint 𝑢(𝑥, 0) = 𝑢0(𝑥). It turns our that requiring the potential 𝑢(𝑥, 𝑡) to evolve in time
in accordance with the KdV equation requires that the scattering data evolves in time with

𝑅(𝑘, 𝑡) = 𝑅(𝑘, 0)𝑒8𝑖𝑘
3𝑡

𝑝𝑛(𝑡) = 𝑝𝑛(0)

𝜌𝑛(𝑡) = 𝜌𝑛(0)𝑒8𝑝
3
𝑛𝑡.

For a justification of this fact, see chapter 2 of [3]. Note here that the discrete spectrum of 𝑆(𝑡) does
not change in time, so the scattering data is said to evolve isospectrally. From here, one can find the
scattering data for arbitrary time, yielding

𝑆(𝑡) = {𝑅(𝑘, 𝑡), 𝑝1(𝑡), ..., 𝑝𝑛(𝑡), 𝜌1(𝑡), ..., 𝜌𝑛(𝑡)}.

From this data, one performs inverse scattering at arbitrary time to recover the function 𝑢(𝑥, 𝑡).Although
not true for arbitrary nonlinear evolution equations, this method does produce functions which solve
the KdV equation and satisfy 𝑢(𝑥, 0) = 𝑢0(𝑥), the reasons essentially stemming from the fact that the
scattering data 𝑆(𝑡) takes a particularly simple form.

This procedure is called the Inverse Scattering Method (ISM) for the Schrödinger problem, and
can be employed for certain nonlinear equations of the form

𝑢𝑡 = 𝐹 (𝑢, 𝑢𝑥, 𝑢𝑥𝑥, ...).
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The idea, as we have seen, is that from some initial function 𝑢0(𝑥), one applies direct scattering to obtain
𝑆(0). Then, the evolution equation allows one to obtain the scattering data at arbitrary time, from which
one carries out inverse scattering to obtain the function 𝑢(𝑥, 𝑡).

From our cursory review of the method for solving the KdV equation, we can now place on firmer
footing the idea of a ’soliton.’ In particular, an 𝑁-soliton for some nonlinear PDE solvable by some
form of the ISM is a solution for which the scattering data is such that 𝑅(𝑘, 𝑡) = 0 for all 𝑡, and there are
exactly 𝑁 discrete eigenvalues 𝑝1(0), ..., 𝑝𝑛(0). From the scattering evolution written above for the KdV
equation, it is clear that the discrete spectrum of the Schrödinger operator does not depend on time, and
this is also true generically for equations solvable by this method. This is more-or-less by definition:
a soliton equation must be solvable by some form of the ISM for which the discrete spectrum of the
associated linear problem evolves isospectrally in the ’time’ variable. This isospectral evolution of the
scattering data explains why solitons possess the remarkable stability first observed by John Scott Russell
in 1845. In addition, the stipulation of a reflectionless potential causes the Gel’fan-Levitan-Marchenko
equation to be separable, so that soliton solutions can be produced exactly.

5.2 The AKNS Method and Relations to Surface Theory

From this discussion alone, one is justified in asking how this relates at all to surface theory. Although
we have seen solutions to sG claimed to be ’solitons,’ we clearly need a different linear problem than the
time-independent Schrödinger equation to apply inverse scattering for sG. Indeed, the inverse spectral
transform for the Schrödinger problem on the real line can only be applied to a specific class of nonlinear
PDEs of the form

𝑢𝑡 = 𝐹 (𝑢, 𝑢𝑥, 𝑢𝑥𝑥, ...),

in which class sG is not included. However, the AKNS method discovered by Ablowitz, Kaup, Newell,
and Segur generalizes the application of inverse scattering considerably, and can be summarized as
follows: we seek a pair of linear operators 𝐴(𝑥, 𝑡, 𝜆) and 𝐵(𝑥, 𝑡, 𝜆) such that the nonlinear PDE to be
solved takes the form

𝐴𝑡 − 𝐵𝑥 + [𝐴,𝐵] = 0.

The necessary conditions for these operators are the following: that 𝐴 is associated to the scattering
problem 𝑣𝑥 = 𝐴𝑣, the spectral parameter 𝜆 is such that 𝜆𝑡 = 0 (isospectral evolution), the operator 𝐵 is
such that, given 𝑣 a solution to the scattering problem 𝑣𝑥 = 𝐴𝑣, we also have that 𝑣𝑡 − 𝐵𝑣 is a solution
to the scattering problem, and lastly that 𝐴𝑡 − 𝐵𝑥 + [𝐴,𝐵] is not a differential operator. In this case,
the inverse scattering problem goes through similarly as in the case of the Schrödinger problem. An
interesting technical difference is that the eigenvalues of the discrete spectrum of 𝐴 need not lie on the
imaginary axis as in the Schrödinger problem, which gives rise to complex-conjugate pairs of discrete
eigenvalues whose soliton solutions, called breathers, are periodic in the variable 𝑡. This method was a
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modification of the so-called Zhakarov-Shabat system for solving the non-linear Schrödinger equation:
𝑖𝑢𝑡 + 𝑢𝑥𝑥 + 2|𝑢|2𝑢 = 0

by employing the method of inverse scattering to the associated spectral problem
(

𝑣1
𝑣2

)

𝑥

=

(

−𝑖𝜆 𝑢(𝑥, 𝑡)
−𝑢∗(𝑥, 𝑡) 𝑖𝜆

)(

𝑣1
𝑣2

)

,

where ∗ denotes complex conjugation. In the AKNS-method, the pair of operators for the nonlinear
Schrödinger equation are

𝐴 =

(

−𝑖𝜆 𝑢
−𝑢∗ 𝑖𝜆

)

𝐵 =

(

−2𝑖𝜆2 + 𝑖|𝑢|2 2𝜆𝑢 + 𝑖𝑢𝑥
−2𝜆𝑢∗ + 𝑖𝑢∗𝑥 2𝑖𝜆2 − 𝑖|𝑢|2

)

.

The AKNS method was originally devised to solve sG [1], and the corresponding operators are

𝐴 =

(

−𝑖𝜆 −1∕2𝜙𝑥
1∕2𝜙𝑥 𝑖𝜆

)

𝐵 = 𝑖
4𝜆

(

cos𝜙 sin𝜙
sin𝜙 −cos𝜙

)

,

which is the linear representation derived in section 3.4 up to a gauge transformation. Thus, the AKNS
system for the sG is not some happy accident which mathematicians have stumbled upon: these are
equations from classical surface theory. Indeed, the equations 𝑣𝑥 = 𝐴𝑣 and 𝑣𝑡 = 𝐵𝑣 are simply the
Christoffel system of section 2.2.4, up to the 𝔰𝔬(3) - 𝔰𝔲(2) isomorphism and an appropriate gauge trans-
formation, and the compatibility condition 𝐴𝑡 − 𝐵𝑥 + [𝐴,𝐵] = 0 is the Gauss equation. For a more
complete review of the AKNS method for solving soliton equations, see chapter 2 of [9].

An even more striking fact is that any soliton equation solvable via the AKNS method describes
pseudospherical surfaces, and Bäcklund Transformations can be obtained by the classical transformation
of pseudospherical surfaces which we have discussed at length. This was first observed by Sasaki in [13],
and lead to the notion of non-linear evolution equations of "pseudospherical type," introduced by Chern
and Tenenblat in 1986, and discussed in [11].

Although this fact seems to justify the statement that "soliton theory is surface theory," there are
more elementary connections between surface theory and soliton equations which we have not been
discussed. For example, the nonlinear Schrödinger equation was derived by Hasimoto in 1972 in con-
nection with the motion of a thin isolated vortex filament moving through an incompressible fluid [10].
In particular, the motion of such a vortex filament draws out a so-called Hasimoto surface, for which the
Gauss equation becomes the nonlinear Schrödinger equation. Examples of such connections abound in
surface theory; a thorough and extensive exposition of such results is given in [12].

6 Conclusion

In this thesis, we investigated the relationship between pseudospherical surfaces and the sine-Gordon
equation. After discussing this simple relationship through the study of pseudospherical surfaces of

63



revolution and Hilbert’s Theorem, our exploration of the pseudospherical transformations of Bianchi
and Bäcklund led up to discover methods for producing a wealth of solutions to the sine-Gordon equa-
tion, including 1- and 2-soliton solutions. We then related the geometric structure of the sine-Gordon
equation to its status as a soliton equation, and remarked that the connection between soliton theory and
pseudospherical surface theory extends to a large class of nonlinear PDEs.

The relationship between soliton equations and differential geometry is a vast subject which we
have only scratched the surface of here. The interested reader is referred to [14] as a starting point to
explore more recent advancements and open problems in the field.
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