Chapter 2. Analytic Functions

Functions of a Complex Variable

We will consider functions \(f : S \rightarrow \mathbb{C} \)
where \(S \subset \mathbb{C} \) is the domain of \(f \).

Examples: Find the domains of the following functions:

(i) \(f(z) = \frac{1}{z} \)
(ii) \(f(z) = \text{Arg}(z) \)
(iii) \(f(z) = \text{Arg}(\frac{1}{z}) \).

Note: Let \(S \subset \mathbb{C} \). Any function \(f : S \rightarrow \mathbb{C} \)
can be written as:

\[
f(z) = u + iv,
\]

where \(z = x + iy \in S \).

The functions \(u \) and \(v \) are:

where
Example. Write the function $f(z) = \frac{1}{z}$ in the form $f(z) = u(x,y) + i v(x,y)$.

The mapping $w = z^2$

<table>
<thead>
<tr>
<th>z</th>
<th>$f(z) = z^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2i$</td>
<td>-4</td>
</tr>
<tr>
<td>$1+i$</td>
<td>$2+i$</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Ex. Let $f(z) = z^2$.

(i) Find the image of the imaginary axis
(ii) Find the image of any vertical line $\text{Re}(z) = c$

where c is a non-zero constant. Sketch the image.
(iii) Find the image of the real axis.

(iv) Find the image of any horizontal line \(\text{Im}(z) = c \) where \(c \) is any nonzero constant. Sketch the image.

Note: Let \(SC \subset \mathbb{C} \) and suppose \(f : S \to \mathbb{C} \). Let \(A \subset S \). The image of \(A \) under \(f \) is denoted by \(f(A) \) and is defined by

Let \(f : \mathbb{C} \to \mathbb{C} \) by \(f(z) = z^2 \). Then

\[
\begin{align*}
f(z) &= (x + iy)^2 \\
&= u(x, y) + iv(x, y)
\end{align*}
\]

where \(u(x, y) = \) and \(v(x, y) = \)

(v) Let \(z = \) where

Then \(f(z) = \) where the image of the imaginary axis under \(f \) is \(i \).
(iii) let \(z = \)
\[
\text{then } f(z) =
\]
(iii) Let \(z = \)
\[\theta \in \theta \]
Then \(f(\theta) = \)

(iv) Let \(z = \)
\[\text{where} \]
\[\text{then } f(z) = \]
1. $f(z) = z^2$
2. \(f(z) = \frac{1}{z} \)
Example: Find the image of the sector $0 \leq \theta \leq \frac{\pi}{4}$, $0 < r \leq 1$ under the map $f(z) = \frac{1}{z}$.

Let $z \in S$ then

$$w = \frac{1}{z}$$

where

Then $w = f(z) =$
Example: Let $f: \mathbb{C} \to \mathbb{C}$ by $f(z) = z^3$.
Describe this map.

Exercise
Under the map $w = \frac{1}{z}$, show that
(i) The image of any horizontal line (except the 0) is a circle.
(ii) The image of any vertical line (except the 0) is a circle.
Hint: Try to get $u^2 + v^2$ in terms of u or v.
Limits

Definition: Let $z_0 \in \mathbb{C}$. A deleted (punctured) neighborhood of z_0 has the form

$$D'(z_0, r) = \{ z \in \mathbb{C} : \}$$

Definition: Let $z_0 \in \mathbb{C}$ & suppose $f: D'(z_0, r) \to \mathbb{C}$ for some $r > 0$. Let $w_0 \in \mathbb{C}$. We say the limit of $f(z)$ as z approaches z_0 is w_0 and write

if

![Diagram of deleted neighborhoods with points and arrows indicating direction and distance](diagram.jpg)
Example Using the definition show that
\[
\lim_{z \to i} (2z+1) = 2i+1.
\]

Working: Let \(\varepsilon > 0 \). We want to show that there is a \(\delta > 0 \) such that

\[
|f(z)| < \varepsilon \quad \text{if} \quad |z - i| < \delta.
\]

Proof: Let \(\varepsilon > 0 \) be any fixed positive real number. Suppose
Example: Use the definition to prove that

$$\lim_{z \to 1+i} \frac{i}{z} =$$

Working:
Proof: Let $\varepsilon > 0$ be any fixed positive real number.
Let $\delta =$
Theorems on Limits

Theorem Let \(f \) be defined on an deleted neighborhood of \(z_0 = x_0 + iy_0 \) & let \(w_0 = u + iv_0 \) abide \(x_0, y_0, u, v_0 \in \mathbb{R} \) &

\[f(z) = u(x, y) + iv(x, y) \]

for \(z = x + iy \) in domain of \(f \). Then

\[\lim_{z \to z_0} f(z) = w_0 \]

if and only if

Example Let \(f(z) = \frac{1}{z} \).

Find \(\lim_{z \to 1+i} f(z) \).
Proof of Theorem

(⇒) Suppose \(\lim_{z \to z_0} f(z) = w_0 \).
Theorem

Suppose \(f(z) \) and \(g(z) \) are complex-valued functions defined on a deleted neighborhood of \(z_0 \), and suppose

\[
\lim_{z \to z_0} f(z) = w_0 \quad \text{and} \quad \lim_{z \to z_0} g(z) = w_1.
\]

Then

(1) \[
\lim_{z \to z_0} \left(f(z) + g(z) \right) =
\]

(2) \[
\lim_{z \to z_0} f(z) g(z) =
\]

(3) \[
\lim_{z \to z_0} \frac{f(z)}{g(z)} = \quad \text{if} \quad g(z) \neq 0
\]

(4) \[
\lim_{z \to z_0} c f(z) = \quad \text{if} \quad c \neq 0
\]

(5) \[
\lim_{z \to z_0} z^n = \quad \text{if} \quad c \neq 0
\]

(6) \[
\lim_{z \to z_0} P(z) =
\]

if \(P(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0 \) is a polynomial.

(7) \[
\lim_{z \to z_0} \frac{P(z)}{Q(z)} = \quad \text{if} \quad \frac{P(z)}{Q(z)} \text{ is a rational function}
\]

and
THE POINT AT INFINITY

Suppose \(z_0 \in \mathbb{C} \) and \(f(z) \) is defined on a deleted neighborhood of \(z_0 \).

Definition. We say \(f(z) \) approaches \(\infty \) as \(z \to z_0 \) if

\[
\lim_{z \to z_0} f(z) = \infty
\]

Note: This holds iff

Here \(\lim_{z \to z_0} f(z) = \infty \) iff
The Riemann Sphere

Each point \(z \) in the complex plane \(\mathbb{C} \) corresponds to ---

Draw a

Conversely,

We let \(\infty \) correspond to the point --- and call \(\{ z \mid z \in \mathbb{C} \} \) the ---
Let $M > 0$. A neighborhood of ∞ has the form
\[\{ x \in \mathbb{R} | x > M \} \cup \{ x \in \mathbb{R} | x < -M \}. \]

Definition. Let $w \in \mathbb{C}$. Suppose $f(z)$ is defined on a (deleted) neighborhood of ∞. We say $\lim_{z \to \infty} f(z) = w$ if
\[\text{let } z' = \frac{1}{z}. \]
Hence
\[\lim_{z \to \infty} f(z) = w_0 \text{ iff } \]

Example Find \[\lim_{z \to \infty} \frac{iz + 1}{z - i} \]
Continuity

Let \(z_0 \in \mathbb{C} \) and suppose \(f(z) \) is a complex-valued function defined on an open neighborhood of \(z_0 \), i.e.

\[
\begin{array}{c}
\text{Def:} \quad f \text{ is continuous at } z_0 \\
\text{if} \\
(i) \\
(ii) \\
(iii) \\
\text{ie}
\end{array}
\]

Theorem. Let \(f(z) = u(x,y) + iv(x,y) \) where \(f \) is continuous at \(z_0 = x_0 + iy_0 \) iff

\[
\text{Example} \quad f(z) = (x + e^{2y}) - i \sin(2y) \text{ is}
\]
Also find \(\lim_{z \to \pi + i} f(z) \).

Derivatives

Definition

Let \(z_0 \in \mathbb{C} \) and suppose \(f(z) \) is a complex-valued function defined on some open neighborhood of \(z_0 \).

If

\[
\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = L
\]

we say \(f(z) \) is **differentiable at** \(z_0 \).

If

\[
f'(z_0) = \]

Note

Let \(\Delta z := \)

\[
\lim_{z \to z_0} \text{ iff } \Delta z \to _ _ _ \]

We can write
Hence \(f \) is differentiable at \(z \) iff

Example Show that \(f(z) = z^2 \) is differentiable at every \(z \) and find \(f'(z) \).

Example Determine where \(f(z) = \overline{z} \) is differentiable.
Differentiation Formulas

Notation \(\frac{d}{dz} f(z) = \) (assuming

Suppose \(f, g \) are differentiable functions \(f: \mathbb{C} \to \mathbb{C} \) and \(g: \mathbb{C} \to \mathbb{C} \). Then

1. \(\frac{d}{dz} c = 0 \) if

2. \(\frac{d}{dz} c f(z) = c f'(z) \) if

3. \(\frac{d}{dz} z^n = n z^{n-1} \) if

4. \(\frac{d}{dz} (f(z) + g(z)) = f'(z) + g'(z) \)

5. \(\frac{d}{dz} (f(z) g(z)) = f(z) g'(z) + f'(z) g(z) \)
(6) \[\frac{d}{dt} f(g(t)) = \]

Example. Let \(f(z) = (1 + z + z^2)^{100} \)

Cauchy–Riemann Equations

Theorem. Suppose \(f(z) = u(x,y) + iv(x,y) \) is a complex-valued function defined on some

--- of \(z_0 \), and suppose \(f \) is
differentiable at \(z_0 = x_0 + iy_0 \). [i.e., \(u, v \in C \).]

Then the

and satisfy the Cauchy–Riemann equations

at.

Further,

\[f'(z_0) = \]
Proof: Suppose \(f \) is differentiable at \(z_0 = x_0 + i y_0 \). Then the limit \(f'(z_0) = \) exists. First we let \(\Delta z \to 0 \) along the real axis, so that \(\Delta z = \)

Therefore,

\[
 f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \quad \text{(along real axis)}
\]
Hence the partial derivatives must and

\[f'(z_0) = \]

Now let \(\Delta z \to 0 \) along imaginary axis.

\[\Delta z = \]

So \(\lim_{\Delta z \to 0} f'(z_0) = \) (along imaginary axis)
So the partial derivatives must and

\[f'(z_0) = \]

Hence

\[\text{Corollary If the Cauchy-Riemann equations are not satisfied at } (x_0, y_0) \text{ then} \]
Example: Let $f(z) = |z|^2$.
What do the Cauchy-Riemann Equations imply about the differentiability of $f(z)$?

WARNING
Sufficient Conditions

Theorem

Suppose the function \(f(z) = u(x,y) + iv(x,y) \) \((u,v \in \mathbb{R})\)

is defined on an open neighborhood \(D(z_0, r) \) of \(z_0 = x_0 + iy_0 \). Suppose the partial derivatives of all and one equations hold at \(z_0 \). Then if the Cauchy-Riemann equations hold at \(z_0 \), then

Proof

See pp. 66-67 of the Text.

Example

Let \(f(z) = |z|^2 \). Does the theorem apply? What does it imply?
Example: Let \(f(z) = 2xy - i(x^2 - y^2) \). What is \(f \) differentiable? Find \(f'(z) \).
The Cauchy-Riemann Equations in Polar Form

Theorem

Suppose

\[f(re^{i\theta}) = u(r, \theta) + iv(r, \theta) \]

for \(0 < \delta < r < r_0 + \delta, \theta_0 - \delta' < \theta < \theta_0 + \delta' \)

some \(\delta, \delta' > 0 \). Let \(z_0 = r_0 e^{i\theta_0} \)

Suppose the first order partial derivatives

\[\frac{\partial u}{\partial r}, \frac{\partial u}{\partial \theta}, \frac{\partial v}{\partial r}, \frac{\partial v}{\partial \theta} \]

exist everywhere in \(S \) & are continuous at \((r_0, \theta_0) \).

If the Cauchy-Riemann Equations

\[\frac{\partial u}{\partial r} = \frac{\partial v}{\partial \theta}, \quad \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r} \]

hold at \(z_0 \), then \(f \) is differentiable at \(z_0 \) and

\[f'(z_0) = \]
Proposition

Let \(f(z) = u(x, y) + iv(x, y) \) is defined on a neighborhood of the \(\ldots \) point \(z_0 = x_0 + iy_0 \). Suppose the partial derivatives exist at \(\ldots \) and the Cauchy-Riemann Equations hold at \(\ldots \). Then the Cauchy-Riemann Equations (polar form)

\[
\begin{align*}
U(r, \theta) &= \ldots, \\
V(r, \theta) &= \ldots
\end{align*}
\]

Proof We let

\[
\begin{align*}
U(r, \theta) &= u(x, y), \\
V(r, \theta) &= v(x, y)
\end{align*}
\]

where \(x = \ldots \), \(y = \ldots \).

Then

\[
\begin{align*}
\frac{\partial u}{\partial x} &= \ldots, \\
\frac{\partial v}{\partial r} &= \ldots
\end{align*}
\]
\[\frac{\partial u}{\partial \theta} \]

\[\frac{\partial v}{\partial \theta} \]

Here

\[
\begin{pmatrix}
\frac{\partial u}{\partial r} \\
\frac{\partial u}{\partial \theta}
\end{pmatrix}
= \begin{pmatrix}
\text{ } \\
\text{ }
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
\frac{\partial v}{\partial r} \\
\frac{\partial v}{\partial \theta}
\end{pmatrix}
= \begin{pmatrix}
\text{ } \\
\text{ }
\end{pmatrix}
\]

Let

\[A = \begin{pmatrix}
\text{ }
\end{pmatrix} \]

Then det \(A = \)

so \(A \) is
If \(\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \) & \(\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \)

Then

\[\frac{\partial u}{\partial \theta} \]

And

\[\frac{1}{r} \frac{\partial u}{\partial \theta} = \]

which is

As if \(\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \) & \(\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \)

Then

\[\frac{\partial V}{\partial \theta} = \]
Exercise 3 Assume $0 < r_0$.
Show that if

$$
\frac{1}{r} \frac{\partial v}{\partial \theta} = \frac{\partial u}{\partial r}, \quad \frac{1}{r} \frac{\partial u}{\partial \theta} = \frac{\partial v}{\partial r}
$$

hold at (r_0, θ_0). Then the Cauchy-Riemann Equations

$$
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}
$$

hold at

$$
\theta_0 = r_0 e^{i \theta_0} = r_0 (\cos \theta_0 + i \sin \theta_0).
$$
Exercise. Let \(z_0 = r_0 e^{i\theta_0} \), where \(0 < r_0 < R \).

Let \(f(r e^{i\theta}) = U(r, \theta) + iV(r, \theta) \)
as in the theorem. If \(f \) is differentiable at \(z_0 \), prove that

\[
f'(z_0) = e^{-i\theta_0} \left(\frac{\partial U}{\partial r}(r_0, \theta_0) + i \frac{\partial V}{\partial r}(r_0, \theta_0) \right).
\]
Example

Let \(D = \{ z \in \mathbb{C} : z \neq 0 \text{ and } -\pi < \arg z < \pi \} \)

Define \(g : D \to \mathbb{C} \) by \(g(z) = \sqrt{r} e^{i \theta / 2} \)

where \(z = r e^{i \theta} \), \(r > 0 \) and \(\theta = \arg z \).

\(g(z) \) is the principal value of \(\sqrt{z} \).

Show \(g \) is differentiable and find \(g'(z) \).
Analytic Functions

Definition: Let \(z_0 \in \mathbb{C} \) and suppose \(f \) is a complex-valued function defined on some open neighborhood of \(z_0 \). We say \(f \) is analytic at \(z_0 \) if

\[
\]

If \(f \) is defined on an open set \(S \) then we say \(f \) is analytic on \(S \) if

\[
\]

Note:

1. A set \(S \subset \mathbb{C} \) is open if

2. Some books use
Definition: \(f : \mathbb{C} \to \mathbb{C} \) is entire if \(f(z) \) is \(\overline{\text{a}} \) \(\overline{\text{b}} \).

Remark:

Example. Let \(f : \mathbb{C} \to \mathbb{C} \) by \(f(z) = 1 \cdot z^2 \).
We have seen that \(f \) is \(\overline{\text{d}} \) \(\overline{\text{e}} \),
\(f \) is \(\overline{\text{f}} \).
More \(f \) is \(\overline{\text{g}} \).

Example. Let \(D = \mathbb{C} \setminus \{0\} = \{ z \in \mathbb{C} : z \neq 0 \} \).
Then \(D \) is an \(\overline{\text{h}} \) subset of \(\mathbb{C} \).
Let \(f : D \to \mathbb{C} \) by \(f(z) = \frac{1}{z} \).
Then \(f \) is \(\overline{\text{i}} \) on \(\overline{\text{j}} \) and
\(f'(z) = \overline{\text{k}} \).

Notice that \(f \) is analytic on \(\overline{\text{l}} \).
The point \(\overline{\text{m}} \) is called \(\overline{\text{n}} \) of \(f \).

Definition. If \(f \) is \(\overline{\text{o}} \) but \(\overline{\text{p}} \),
\(z_0 \) is called \(\overline{\text{q}} \).
Example: Let \(f : \mathbb{C} \rightarrow \mathbb{C} \) by \(f(z) = \frac{1}{(z-1)(z-2)} \).

Proposition: Suppose \(D \) is an open subset of \(\mathbb{C} \). Suppose \(f : D \rightarrow \mathbb{C} \), \(g : D \rightarrow \mathbb{C} \) are analytic functions. Then

1. \(f(z) + g(z) \) is
2. \(f(z) \cdot g(z) \) is
3. \(\frac{f(z)}{g(z)} \) is

Proposition: Suppose \(D, E \) are open subsets of \(\mathbb{C} \), \(f : D \rightarrow \mathbb{C} \), \(g : D \rightarrow \math{E} \) are analytic and \(\cdots \). Then

\(g \circ f : \cdots \rightarrow \mathbb{C} \) by \((g \circ f)(z) = \cdots \)
is analytic on \(\cdots \) and

\((g \circ f)'(z) = \)
Example (§5, p. 76)

Let \(g(z) = \sqrt{r} \, e^{i\theta} \) (for \(r > 0 \), \(-\pi < \theta < \pi \)).

Then \(g \) is analytic on \(D = \{ z : \Re(z) > 0, \, \Re(z) < \pi \} \).

Also, \(g'(z) = \frac{i}{\sqrt{r}} e^{i\theta} \).

Show that \(G(z) = g(2z - 2 + i) \) is analytic in the half-plane \(\Re(z) > 1 \) with derivative \(G'(z) = \).

Let \(h: \mathbb{C} \rightarrow \mathbb{C} \) by \(h(z) = 2z - 2 + i \).

Then \(h \) is -

Let \(H = \{ z \in \mathbb{C} : \Re(z) > 1 \} \)

We need to show that -
h

Hence $G = \quad \rightarrow$ is \quad and

$G'(x) =$

Theorem 1. Suppose $D \subseteq \mathbb{C}$ is a domain (i.e., an \quad subset of \mathbb{C}). Suppose $f: D \rightarrow \mathbb{C}$ is \quad and

$f'(z) = 0$ for \quad.
We need some results from Calculus:

Theorem 2

(i) Let $a < b$ be real constants.

If $f : (a, b) \to \mathbb{R}$ is _____ and

$f'(x) = 0$ for _____

then

(ii) Suppose $f : [a, b] \to \mathbb{R}$ is _____ and _____ on _____ and

$f'(x) = 0$ for _____

then

(iii) Let $a < x_0 < b$ and suppose

$f : (a, b) \to \mathbb{R}$ is _____ at x_0

and f is _____ at x_0.

Proof of Theorem

Suppose $D \subseteq \mathbb{C}$ is a domain & $f : D \to \mathbb{C}$ is analytic and $f'(z) = 0$ for all $z \in D$.

Let $f(z) = u(x, y) + iv(x, y)$ \hspace{1cm} $(u, v \in \mathbb{R})$

for $z \in D$. Then

$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial y} = 0$

for all $z \in D$. So u, v are harmonic,

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$
(1) First we show that f is constant along any horizontal line segment $l \subset D$.

Let $g_1 : x \rightarrow y$ be given by $g_1(x) = \ldots$

Then g_1 is \ldots on \ldots and \ldots on \ldots and $g_1'(x) = \ldots$

So \ldots since f is \ldots

Hence $g_1'(x) = \ldots$

For \ldots g_1 is a \ldots

Hence \ldots is a \ldots constant.
(2) Similarly we can show f is constant along any vertical line segment $C \subset D$.

Let points a, a' be given by

Now for $z = f(z) =$

Let $g_z : \mathbb{R} \to \mathbb{R}$ by $g_z(x) =$

Then g_z is \(\ldots \) on \(\ldots \) and \(\ldots \) on \(\ldots \) and

\[g_z'(x) = \]

For \(\ldots \) since f is \(\ldots \) and \(\ldots \) exist for

Hence

\[g_z'(x) = \]

For \(\ldots \) and g_z is a \(\ldots \)

any f is \(\ldots \)
(3) Now fix any point $z_0 \in D$ and let z be any point in D. We show that $f(z) = z$.

Since D is open and connected, it can be shown that $f(z_0) = z_0$.

It follows that $f(z) = z$ for all $z \in D$. Therefore, f is constant. \square
Example (See p. 75 of text)

Suppose that a function
\[f(z) = u(x, y) + i v(x, y) \]
and its conjugate
\[\overline{f(z)} = u(x, y) - i v(x, y) \]
are both analytic on a domain \(D \) (i.e., \(D \subset \mathbb{C} \)) and \(D \) is \(\cdots \) and \(\cdots \)

Show that \(f(z) \) is a constant function on \(D \).
Example (see pp. 75-76 of text)
Suppose \(f(z) \) is analytic on a domain \(D \) and \(|f(z)| \) is constant on \(D \). Prove that \(f(z) \) is a constant function on \(D \).
Harmonic Functions

Definition: Let \(D \subseteq \mathbb{R}^2 \) be a domain (i.e. \(D \) is a region and \(\partial D \)). A function \(h : D \rightarrow \mathbb{R} \) is harmonic if
Example Let \(h(x, y) = x^3 - 3x(y^2) \).

Theorem Let \(D \subseteq \mathbb{C} \) be a domain and suppose \(f : D \to \mathbb{C} \) is analytic. If \(f(z) = u(x,y) + iv(x,y) \) then the functions \(u(x,y) \) and \(v(x,y) \) are ______.

Proof: Suppose \(f \) is analytic. Then ______.
Example: The function \(f(z) = z^3 \) is analytic (in fact \(\infty \)).

\[f(x+iy) = \]