

FRIDAY, FEBRUARY 5

MAS 4203 - SPRING 2010 TEST 1

2 BONUS PTS: Who is this guy? State his famous Theorem.

Instructions: Answer all questions. Show all necessary working and reasoning. Your work should be written in a proper and coherent fashion, and in a way that any student in the class can follow your work. When giving proofs your reasoning should be clear. Only scientific calculators are allowed. 50 points total.

1. $[2+4=6 \mathrm{pts}]$
(a) Let $a, b \in \mathbb{Z}$. Define $a \mid b$.
(b) Suppose $a, b \in \mathbb{Z}$. Prove that if $3 \mid a$ and $4 \mid b$ then $12 \mid(8 a-9 b)$.
2. $[2+3+5=10 \mathrm{pts}]$
(a) Suppose a and b are integers that are not both zero. Define (a, b).
(b) Complete the following

Proposition. Let $a, b \in \mathbb{Z}$ and suppose that a and b are not both zero. Then
(c) Suppose $a, b, c \in \mathbb{Z}$ with $(a, b)=1$. Prove that if $a \mid c$ and $b \mid c$, then $a b \mid c$ using the Proposition in (b) (and NOT the Fundamental Theorem of Arithmetic).
3. $[2+6=8 \mathrm{pts}]$
(a) Define the term prime.
(b) Prove or disprove the following statement.

If $a \in \mathbb{Z}, a>0, p$ is prime, and $p^{7} \mid a^{3}$, then $p^{3} \mid a$.
[Hint. Write the prime factorization of $a=p^{e_{0}} p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$ where each $e_{i} \geq 0$.]
4. $[3+3+6=12 \mathrm{pts}]$
(a) Use the Euclidean algorithm of compute $(1340,1274)$.
(b) Hence find integers x and y such that

$$
1340 x+1274 y=(1340,1274)
$$

(d) Suppose a, b are integers not both zero, let $d=(a, b)$ and suppose $c \in \mathbb{Z}$. Prove that there are integers x, y such that

$$
a x+b y=c
$$

if and only if $d \mid c$.
5. $[2+5+5+2=14 \mathrm{pts}]$

Let $a, b, c, d, m \in \mathbb{Z}$ with $m>0$.
(i) Define what it means to write

$$
a \equiv b \quad(\bmod m) .
$$

(ii) Prove that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ implies that $a c \equiv b d(\bmod m)$.
(iii) Let p be prime. Prove that $a^{2} \equiv b^{2}(\bmod p)$ implies that $a \equiv \pm b(\bmod p)$.
(iv) Is (iii) still true if p is not prime? If not, give an example.

