

$MAS \ 4203 \text{ - } SPRING \ 2010 \ TEST \ 1$

2 BONUS PTS: Who is this guy? State his famous Theorem.

FRIDAY, FEBRUARY 5

Name: _____

Instructions: Answer all questions. Show all necessary working and reasoning. Your work should be written in a proper and coherent fashion, and in a way that any student in the class can follow your work. When giving proofs your reasoning should be clear. Only scientific calculators are allowed. 50 points total.

1. [2+4=6 pts]

- (a) Let $a, b \in \mathbb{Z}$. Define $a \mid b$.
- (b) Suppose $a, b \in \mathbb{Z}$. Prove that if $3 \mid a \text{ and } 4 \mid b \text{ then } 12 \mid (8a 9b)$.

2. [2+3+5=10 pts]

(a) Suppose a and b are integers that are not both zero. Define (a, b).

(b) Complete the following

Proposition. Let $a, b \in \mathbb{Z}$ and suppose that a and b are not both zero. Then

 $(a,b) = \min\{\dots,\dots,\}.$

(c) Suppose $a, b, c \in \mathbb{Z}$ with (a, b) = 1. Prove that if $a \mid c$ and $b \mid c$, then $ab \mid c$ using the Proposition in (b) (and NOT the Fundamental Theorem of Arithmetic).

- **3**. [2+6=8 pts]
- (a) Define the term *prime*.

(b) Prove or disprove the following statement. If $a \in \mathbb{Z}$, a > 0, p is prime, and $p^7 \mid a^3$, then $p^3 \mid a$. [Hint. Write the prime factorization of $a = p^{e_0} p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$ where each $e_i \ge 0$.]

4. [3+3+6=12 pts]

(a) Use the Euclidean algorithm of compute (1340, 1274).

(b) Hence find integers x and y such that

$$1340x + 1274y = (1340, 1274).$$

(d) Suppose a, b are integers not both zero, let d = (a, b) and suppose $c \in \mathbb{Z}$. Prove that there are integers x, y such that

$$ax + by = c$$

if and only if $d \mid c$.

5. [2+5+5+2=14 pts]

Let $a, b, c, d, m \in \mathbb{Z}$ with m > 0.

(i) Define what it means to write

$$a \equiv b \pmod{m}$$
.

- (ii) Prove that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ implies that $ac \equiv bd \pmod{m}$.
- (iii) Let p be prime. Prove that $a^2 \equiv b^2 \pmod{p}$ implies that $a \equiv \pm b \pmod{p}$.
- (iv) Is (iii) still true if p is not prime? If not, give an example.